Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Haematologica ; 108(5): 1259-1271, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36632736

ABSTRACT

T-cell acute lymphocytic leukemia protein 1 (TAL1) is one of the most frequently deregulated oncogenes in T-cell acute lymphoblastic leukemia (T-ALL). Its deregulation can occur through diverse cis-alterations, including SIL-TAL1 microdeletions, translocations with T-cell Receptor loci, and more recently described upstream intergenic non-coding mutations. These mutations consist of recurrent focal microinsertions that create an oncogenic neo-enhancer accompanied by activating epigenetic marks. This observation laid the groundwork for an innovative paradigm concerning the activation of proto-oncogenes via genomic alterations of non-coding intergenic regions. However, for the majority of T-ALL expressing TAL1 (TAL1+), the deregulation mechanism remains 'unresolved'. We took advantage of H3K27ac and H3K4me3 chromatin immunoprecipitation sequencing data of eight cases of T-ALL, including five TAL1+ cases. We identified a putative novel oncogenic neo-enhancer downstream of TAL1 in an unresolved monoallelic TAL1+ case. A rare but recurrent somatic heterozygous microinsertion within this region creates a de novo binding site for MYB transcription factor. Here we demonstrate that this mutation leads to increased enhancer activity, gain of active epigenetic marks, and TAL1 activation via recruitment of MYB. These results highlight the diversity of non-coding mutations that can drive oncogene activation.


Subject(s)
Enhancer Elements, Genetic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Cell Acute Lymphocytic Leukemia Protein 1 , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Mutation , Oncogene Proteins, Fusion/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Lymphocytes/metabolism , Transcription Factors/genetics
2.
Int J Mol Sci ; 21(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575583

ABSTRACT

Kallikrein-related peptidases (KLKs) and matrix metalloproteinases (MMPs) are secretory proteinases known to proteolytically process components of the extracellular matrix, modulating the pericellular environment in physiology and in pathologies. The interconnection between these families remains elusive. To assess the cross-activation of these families, we developed a peptide, fusion protein-based exposition system (Cleavage of exposed amino acid sequences, CleavEx) aiming at investigating the potential of KLK14 to recognize and hydrolyze proMMP sequences. Initial assessment identified ten MMP activation domain sequences which were validated by Edman degradation. The analysis revealed that membrane-type MMPs (MT-MMPs) are targeted by KLK14 for activation. Correspondingly, proMMP14-17 were investigated in vitro and found to be effectively processed by KLK14. Again, the expected neo-N-termini of the activated MT-MMPs was confirmed by Edman degradation. The effectiveness of proMMP activation was analyzed by gelatin zymography, confirming the release of fully active, mature MT-MMPs upon KLK14 treatment. Lastly, MMP14 was shown to be processed on the cell surface by KLK14 using murine fibroblasts overexpressing human MMP14. Herein, we propose KLK14-mediated selective activation of cell-membrane located MT-MMPs as an additional layer of their regulation. As both, KLKs and MT-MMPs, are implicated in cancer, their cross-activation may constitute an important factor in tumor progression and metastasis.


Subject(s)
Enzyme Precursors/metabolism , Kallikreins/genetics , Kallikreins/metabolism , Matrix Metalloproteinase 14/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Hydrolysis , Kallikreins/chemistry , Matrix Metalloproteinase 14/genetics , Mice , Porphyromonas gingivalis , Protein Engineering , Recombinant Proteins/metabolism
3.
Int J Mol Sci ; 20(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925705

ABSTRACT

Kallikrein 13 (KLK13) was first identified as an enzyme that is downregulated in a subset of breast tumors. This serine protease has since been implicated in a number of pathological processes including ovarian, lung and gastric cancers. Here we report the design, synthesis and deconvolution of libraries of internally quenched fluorogenic peptide substrates to determine the specificity of substrate binding subsites of KLK13 in prime and non-prime regions (according to the Schechter and Berger convention). The substrate with the consensus sequential motive ABZ-Val-Arg-Phe-Arg-ANB-NH2 demonstrated selectivity towards KLK13 and was successfully converted into an activity-based probe by the incorporation of a chloromethylketone warhead and biotin bait. The compounds described may serve as suitable tools to detect KLK13 activity in diverse biological samples, as exemplified by overexpression experiments and targeted labeling of KLK13 in cell lysates and saliva. In addition, we describe the development of selective activity-based probes targeting KLK13, to our knowledge the first tool to analyze the presence of the active enzyme in biological samples.


Subject(s)
Enzyme Assays/methods , Kallikreins/metabolism , Peptides/metabolism , Amino Acid Sequence , Cell Line , Humans , Kinetics , Neoplasms/enzymology , Peptide Library , Peptides/chemistry , Recombinant Proteins/analysis , Recombinant Proteins/metabolism , Substrate Specificity
4.
Nat Struct Mol Biol ; 30(11): 1640-1652, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735617

ABSTRACT

The SS18-SSX fusion drives oncogenic transformation in synovial sarcoma by bridging SS18, a member of the mSWI/SNF (BAF) complex, to Polycomb repressive complex 1 (PRC1) target genes. Here we show that the ability of SS18-SSX to occupy H2AK119ub1-rich regions is an intrinsic property of its SSX C terminus, which can be exploited by fusion to transcriptional regulators beyond SS18. Accordingly, SS18-SSX recruitment occurs in a manner that is independent of the core components and catalytic activity of BAF. Alternative SSX fusions are also recruited to H2AK119ub1-rich chromatin and reproduce the expression signatures of SS18-SSX by engaging with transcriptional activators. Variant Polycomb repressive complex 1.1 (PRC1.1) acts as the main depositor of H2AK119ub1 and is therefore required for SS18-SSX occupancy. Importantly, the SSX C terminus not only depends on H2AK119ub1 for localization, but also further increases it by promoting PRC1.1 complex stability. Consequently, high H2AK119ub1 levels are a feature of murine and human synovial sarcomas. These results uncover a critical role for SSX-C in mediating gene deregulation in synovial sarcoma by providing specificity to chromatin and further enabling oncofusion binding by enhancing PRC1.1 stability and H2AK119ub1 deposition.


Subject(s)
Sarcoma, Synovial , Humans , Animals , Mice , Sarcoma, Synovial/genetics , Sarcoma, Synovial/metabolism , Polycomb Repressive Complex 1/genetics , Transcriptional Activation , Cell Nucleus/metabolism , Chromatin/metabolism , Oncogene Proteins, Fusion/metabolism , Cell Cycle Proteins/metabolism
5.
Biomedicines ; 9(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572949

ABSTRACT

Increased plasma and adipose tissue protease activity is observed in patients with type 2 diabetes and obesity. It has been proposed that specific proteases contribute to the link between obesity, adipose tissue inflammation and metabolic diseases. We have recently shown that ablation of the serine protease kallikrein-related peptidase 7 (Klk7) specifically in adipose tissue preserves systemic insulin sensitivity and protects mice from obesity-related AT inflammation. Here, we investigated whether whole body Klk7 knockout (Klk7-/-) mice develop a phenotype distinct from that caused by reduced Klk7 expression in adipose tissue. Compared to littermate controls, Klk7-/- mice gain less body weight and fat mass both under chow and high fat diet (HFD) feeding, are hyper-responsive to exogenous insulin and exhibit preserved adipose tissue function due to adipocyte hyperplasia and lower inflammation. Klk7-/- mice exhibit increased adipose tissue thermogenesis, which is not related to altered thyroid function. These data strengthen our recently proposed role of Klk7 in the regulation of body weight, energy metabolism, and obesity-associated adipose tissue dysfunction. The protective effects of Klk7 deficiency in obesity are likely linked to a significant limitation of adipocyte hypertrophy. In conclusion, our data indicate potential application of specific KLK7 inhibitors to regulate KLK7 activity in the development of obesity and counteract obesity-associated inflammation and metabolic diseases.

6.
Cell Death Dis ; 11(10): 873, 2020 10 17.
Article in English | MEDLINE | ID: mdl-33070155

ABSTRACT

The HER2-positive breast cancer subtype (HER2+-BC) displays a particularly aggressive behavior. Anti-HER2 therapies have significantly improved the survival of patients with HER2+-BC. However, a large number of patients become refractory to current targeted therapies, necessitating the development of new treatment strategies. Epigenetic regulators are commonly misregulated in cancer and represent attractive molecular therapeutic targets. Monoubiquitination of histone 2B (H2Bub1) by the heterodimeric ubiquitin ligase complex RNF20/RNF40 has been described to have tumor suppressor functions and loss of H2Bub1 has been associated with cancer progression. In this study, we utilized human tumor samples, cell culture models, and a mammary carcinoma mouse model with tissue-specific Rnf40 deletion and identified an unexpected tumor-supportive role of RNF40 in HER2+-BC. We demonstrate that RNF40-driven H2B monoubiquitination is essential for transcriptional activation of RHO/ROCK/LIMK pathway components and proper actin-cytoskeleton dynamics through a trans-histone crosstalk with histone 3 lysine 4 trimethylation (H3K4me3). Collectively, this work demonstrates a previously unknown essential role of RNF40 in HER2+-BC, revealing the H2B monoubiquitination axis as a possible tumor context-dependent therapeutic target in breast cancer.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Gene Expression Regulation, Neoplastic/genetics , Histones/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line, Tumor , Humans , Transcriptional Activation/physiology , Ubiquitination/physiology
7.
Science ; 364(6447)2019 06 28.
Article in English | MEDLINE | ID: mdl-31249032

ABSTRACT

Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.


Subject(s)
Centrosome/physiology , Meiosis , Microtubules/physiology , Oocytes/physiology , Spindle Apparatus/physiology , Animals , Aurora Kinase A/metabolism , Clathrin Heavy Chains/metabolism , Female , Fetal Proteins/metabolism , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL