ABSTRACT
Although Wnt signaling is clearly important for the intestinal epithelial homeostasis, the relevance of various sources of Wnt ligands themselves remains incompletely understood. Blocking the release of Wnt in distinct stromal cell types suggests obligatory functions of several stromal cell sources and yields different observations. The physiological contribution of epithelial Wnt to tissue homeostasis remains unclear. We show here that blocking epithelial Wnts affects colonic Reg4+ epithelial cell differentiation and impairs colonic epithelial regeneration after injury in mice. Single-cell RNA analysis of intestinal stroma showed that the majority of Wnt-producing cells were contained in transgelin (Tagln+) and smooth muscle actin α2 (Acta2+) expressing populations. We genetically attenuated Wnt production from these stromal cells using Tagln-Cre and Acta2-CreER drivers, and found that blockage of Wnt release from either epithelium or Tagln+ and Acta2+ stromal cells impaired colonic epithelial healing after chemical-induced injury. Aggregated blockage of Wnt release from both epithelium and Tagln+ or Acta2+ stromal cells drastically diminished epithelial repair, increasing morbidity and mortality. These results from two uncharacterized stromal populations suggested that colonic recovery from colitis-like injury depends on multiple Wnt-producing sources.
Subject(s)
Actins/metabolism , Colitis, Ulcerative/metabolism , Intestinal Mucosa/metabolism , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Wnt3A Protein/metabolism , Wound Healing , Actins/genetics , Animals , Cells, Cultured , Colon/cytology , Colon/metabolism , Colon/physiology , Intestinal Mucosa/cytology , Mice , Mice, Inbred C57BL , Microfilament Proteins/genetics , Muscle Proteins/genetics , Pancreatitis-Associated Proteins/genetics , Pancreatitis-Associated Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Stem Cells/metabolism , Wnt3A Protein/geneticsABSTRACT
1,25-dihydroxyvitamin D (VD) regulates intestinal calcium absorption in the small intestine (SI) and also reduces risk of colonic inflammation and cancer. However, the intestine compartment-specific target genes of VD signaling are unknown. Here, we examined VD action across three functional compartments of the intestine using RNA-seq to measure VD-induced changes in gene expression and Chromatin Immunoprecipitation with next generation sequencing to measure vitamin D receptor (VDR) genomic binding. We found that VD regulated the expression of 55 shared transcripts in the SI crypt, SI villi, and in the colon, including Cyp24a1, S100g, Trpv6, and Slc30a10. Other VD-regulated transcripts were unique to the SI crypt (162 up, 210 down), villi (199 up, 63 down), or colon (102 up, 28 down), but this did not correlate with mRNA levels of the VDR. Furthermore, bioinformatic analysis identified unique VD-regulated biological functions in each compartment. VDR-binding sites were found in 70% of upregulated genes from the colon and SI villi but were less common in upregulated genes from the SI crypt and among downregulated genes, suggesting some transcript-level VD effects are likely indirect. Consistent with this, we show that VD regulated the expression of other transcription factors and their downstream targets. Finally, we demonstrate that compartment-specific VD-mediated gene expression was associated with compartment-specific VDR-binding sites (<30% of targets) and enrichment of intestinal transcription factor-binding motifs within VDR-binding peaks. Taken together, our data reveal unique spatial patterns of VD action in the intestine and suggest novel mechanisms that could account for compartment-specific functions of this hormone.
Subject(s)
Receptors, Calcitriol , Vitamin D , Animals , Genomics , Intestines , Mice , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Vitamin D3 24-Hydroxylase/geneticsABSTRACT
SLC26A3 [downregulated in adenoma (DRA)] plays a key role in mammalian intestinal NaCl absorption, in that it mediates apical membrane Cl-/[Formula: see text] exchange. DRA function and expression are significantly decreased in diarrhea associated with inflammatory bowel disease. DRA is also considered to be a marker of cellular differentiation and is predominantly expressed in differentiated epithelial cells. Caudal-type homeobox protein-2 (CDX2) is known to regulate genes involved in intestinal epithelial differentiation and proliferation. Reduced expression of both DRA and CDX2 in intestinal inflammation prompted us to study whether the DRA gene is directly regulated by CDX2. Our initial studies utilizing CDX2 knockout (CDX2fV/fV;Cre+) mice showed a marked reduction in DRA mRNA and protein levels in proximal and distal colon. In silico analysis of the DRA promoter showed two consensus sites for CDX2 binding. Therefore, we utilized Caco-2 cells as an in vitro model to examine if DRA is a direct target of CDX2 regulation. siRNA-mediated silencing of CDX2 in Caco-2 cells resulted in a marked (~50%) decrease in DRA mRNA and protein levels, whereas ectopic overexpression of CDX2 upregulated DRA expression and also stimulated DRA promoter activity, suggesting transcriptional regulation. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated direct binding of CDX2 to one of the two putative CDX2 binding sites in the DRA promoter (+645/+663). In summary, our studies, for the first time, demonstrate transcriptional regulation of DRA expression by CDX2, implying that reduced expression of DRA in inflammatory bowel disease-associated diarrhea may, in part, be due to downregulation of CDX2 in the inflamed mucosa.NEW & NOTEWORTHY SLC26A3 [downregulated in adenoma (DRA)] mediates intestinal luminal NaCl absorption and is downregulated in inflammatory bowel disease-associated diarrhea. Since both DRA and caudal-type homeobox protein-2 (CDX2) are reduced in intestinal inflammation and the DRA promoter harbors CDX2 binding sites, we examined whether the DRA gene is regulated by CDX2. Our studies, for the first time, demonstrate transcriptional regulation of DRA expression by CDX2 via direct binding to the DRA promoter, suggesting that reduced expression of DRA in inflammatory bowel disease-associated diarrhea could, in part, be attributed to downregulation of CDX2.
Subject(s)
Antiporters/metabolism , CDX2 Transcription Factor/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Animals , Antiporters/genetics , CDX2 Transcription Factor/genetics , Caco-2 Cells , Chloride-Bicarbonate Antiporters/genetics , Gene Expression Regulation/physiology , Humans , Mice , RNA Interference , RNA, Small Interfering , Sulfate TransportersABSTRACT
The adult gut epithelium has a remarkable ability to recover from damage. To achieve cellular therapies aimed at restoring and/or replacing defective gastrointestinal tissue, it is important to understand the natural mechanisms of tissue regeneration. We employed a combination of high throughput sequencing approaches, mouse genetic models, and murine and human organoid models, and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. Depletion of macrophages or genetic disruption of TGFB-signaling significantly impaired the regenerative response following irradiation. Murine intestinal regeneration is also characterized by a process where a fetal transcriptional signature is induced during repair. In organoid culture, TGFB1-treatment was necessary and sufficient to induce a transcriptomic shift to the fetal-like/regenerative state. The regenerative response was enhanced by the function of mesenchymal cells, which are also primed for regeneration by TGFB1. Mechanistically, integration of ATAC-seq, scRNA-seq, and ChIP-seq suggest that a regenerative YAP-SOX9 transcriptional circuit is activated in epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for the application of the TGFB-induced regenerative circuit in cellular therapy.
ABSTRACT
The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.
Subject(s)
Intestinal Mucosa , Intestines , Animals , Humans , Mice , Colon , Intestinal Mucosa/metabolism , Organoids/metabolism , Signal Transduction , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolismABSTRACT
Epithelial organoids derived from intestinal tissue, called enteroids, recapitulate many aspects of the organ in vitro and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identified an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells and feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown enteroids, and EREG-grown enteroids showed that EGF enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.
Subject(s)
Epidermal Growth Factor , Intestines , Humans , Epiregulin , Intestinal Mucosa , Cell DifferentiationABSTRACT
Tuberculosis (TB) is one of the most fatal infectious diseases, caused by the aerobic bacteria Mycobacterium tuberculosis. It is estimated that one-third of the world's population is infected with the latent (LTB) version of this disease, with only 5-10% of infected individuals developing its active (ATB) form. Pulmonary adenocarcinoma (PA) is the most common and diverse form of primary lung carcinoma. The simultaneous or sequential occurrence of TB and lung cancer in patients has been widely reported and is known to be an issue for diagnosis and surgical treatment. Raising evidence shows that patients cured of TB represent a group at risk for developing PA. In this work, using sRNA-sequencing, we evaluated the expression patterns of circulating small RNAs available in exosomes extracted from blood samples of Peruvian patients affected by latent tuberculosis, active tuberculosis, or pulmonary adenocarcinoma. Differential expression analysis revealed a set of 24 microRNAs perturbed in these diseases, revealing potential biomarker candidates for the Peruvian population. Most of these miRNAs are normally expressed in healthy lung tissue and are potential regulators of different shared and unique KEGG pathways related to cancers, infectious diseases, and immunology.
Subject(s)
Adenocarcinoma , Cell-Free Nucleic Acids , MicroRNAs , Mycobacterium tuberculosis , Tuberculosis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Humans , MicroRNAs/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Peru , Tuberculosis/diagnosisABSTRACT
Adult stem cells maintain regenerative tissue structure and function by producing tissue-specific progeny, but the factors that preserve their tissue identities are not well understood. The small and large intestines differ markedly in cell composition and function, reflecting their distinct stem cell populations. Here we show that SATB2, a colon-restricted chromatin factor, singularly preserves LGR5+ adult colonic stem cell and epithelial identity in mice and humans. Satb2 loss in adult mice leads to stable conversion of colonic stem cells into small intestine ileal-like stem cells and replacement of the colonic mucosa with one that resembles the ileum. Conversely, SATB2 confers colonic properties on the mouse ileum. Human colonic organoids also adopt ileal characteristics upon SATB2 loss. SATB2 regulates colonic identity in part by modulating enhancer binding of the intestinal transcription factors CDX2 and HNF4A. Our study uncovers a conserved core regulator of colonic stem cells able to mediate cross-tissue plasticity in mature intestines.
Subject(s)
Colon , Ileum , Animals , Intestinal Mucosa , Mice , Organoids , Stem CellsABSTRACT
Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.
Subject(s)
Calcitriol/genetics , Intestinal Mucosa/metabolism , Intestines/physiology , Animals , Calcitriol/metabolism , Calcium/metabolism , Genomics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Membrane Calcium-Transporting ATPases/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/analogs & derivatives , Vitamin D/metabolism , Vitamin D/pharmacologyABSTRACT
Oncogenic mutations in BRAF are believed to initiate serrated colorectal cancers; however, the mechanisms of BRAF-driven colon cancer are unclear. We find that oncogenic BRAF paradoxically suppresses stem cell renewal and instead promotes differentiation. Correspondingly, tumor formation is inefficient in BRAF-driven mouse models of colon cancer. By reducing levels of differentiation via genetic manipulation of either of two distinct differentiation-promoting factors (Smad4 or Cdx2), stem cell activity is restored in BRAFV600E intestines, and the oncogenic capacity of BRAFV600E is amplified. In human patients, we observe that reduced levels of differentiation in normal tissue is associated with increased susceptibility to serrated colon tumors. Together, these findings help resolve the conditions necessary for BRAF-driven colon cancer initiation. Additionally, our results predict that genetic and/or environmental factors that reduce tissue differentiation will increase susceptibility to serrated colon cancer. These findings offer an opportunity to identify susceptible individuals by assessing their tissue-differentiation status.
Subject(s)
Cell Differentiation , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Genetic Predisposition to Disease , Proto-Oncogene Proteins B-raf/metabolism , Animals , CDX2 Transcription Factor/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Colorectal Neoplasms/genetics , Disease Models, Animal , Epithelium/metabolism , Epithelium/pathology , Female , Gene Expression Regulation, Neoplastic , Homeostasis , Humans , Intestines/pathology , Male , Mice, Mutant Strains , Smad4 Protein/metabolism , Wnt Signaling PathwayABSTRACT
Wnt signaling has an essential role in embryonic development as well as stem/progenitor cell renewal, and its aberrant activation is implicated in many diseases, including several cancers. ß-Catenin is a critical component of Wnt-mediated transcriptional activation. Here we show that ARF6 activation during canonical Wnt signaling promotes the intracellular accumulation of ß-catenin via a mechanism that involves the endocytosis of growth factor receptors and robust activation of extracellular signal-regulated kinase (ERK). ERK promotes casein kinase 2-mediated phosphorylation of α-catenin, leading to destabilization of the adherens junctions and a subsequent increase in cytoplasmic pools of active ß-catenin and E-cadherin. ERK also phosphorylates LRP6 to amplify the Wnt transduction pathway. The aforementioned Wnt-ERK signaling pathway initiates lumen filling of epithelial cysts by promoting cell proliferation in three-dimensional cell cultures. This study elucidates a mechanism responsible for the switch in ß-catenin functions in cell adhesion at the adherens junctions and Wnt-induced nuclear signaling.
Subject(s)
ADP-Ribosylation Factors/metabolism , Cadherins/metabolism , Endocytosis , Epithelial Cells/cytology , Receptors, Growth Factor/metabolism , Wnt Signaling Pathway , ADP-Ribosylation Factor 6 , Animals , Casein Kinase II/metabolism , Cell Line , Cell Proliferation , Dogs , Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolismABSTRACT
Several mechanisms function in the endocytic regulation of the Wnt/ß-catenin signaling pathway to promote or interrupt the progression of critical cellular processes during embryonic development or disease progression. Endocytosis was initially associated with the formation of a morphogen gradient of Wnt/ß-catenin signaling, but current studies have documented its role in defining signal intensity and propagation. Although the exact parameters that define and dictate the internalization of Wnt receptors and co-receptors via clathrin- or caveolae-mediated endocytosis remain unclear, new studies indicate that the trafficking of the signaling pool of the dual-function protein beta-catenin from sites of cell-cell contacts serve as a mechanism to finely tune the outcome of the Wnt/ß-catenin signaling. This review discusses the endocytic regulation of Wnt/ß-catenin signaling that occurs at the cell surface as well as within the cell.