Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33883278

ABSTRACT

Cancer cells can survive chemotherapy-induced stress, but how they recover from it is not known. Using a temporal multiomics approach, we delineate the global mechanisms of proteotoxic stress resolution in multiple myeloma cells recovering from proteasome inhibition. Our observations define layered and protracted programs for stress resolution that encompass extensive changes across the transcriptome, proteome, and metabolome. Cellular recovery from proteasome inhibition involved protracted and dynamic changes of glucose and lipid metabolism and suppression of mitochondrial function. We demonstrate that recovering cells are more vulnerable to specific insults than acutely stressed cells and identify the general control nonderepressable 2 (GCN2)-driven cellular response to amino acid scarcity as a key recovery-associated vulnerability. Using a transcriptome analysis pipeline, we further show that GCN2 is also a stress-independent bona fide target in transcriptional signature-defined subsets of solid cancers that share molecular characteristics. Thus, identifying cellular trade-offs tied to the resolution of chemotherapy-induced stress in tumor cells may reveal new therapeutic targets and routes for cancer therapy optimization.


Subject(s)
Neoplasms/drug therapy , Stress, Physiological/drug effects , Antineoplastic Agents/pharmacology , Autophagy/physiology , Cell Line, Tumor , Humans , Metabolome/genetics , Mitochondria/metabolism , Multiple Myeloma/metabolism , Neoplasms/metabolism , Neoplasms/physiopathology , Proteasome Inhibitors/pharmacology , Proteolysis , Proteome/genetics , Systems Analysis , Transcriptome/genetics
2.
Br J Cancer ; 128(12): 2326-2337, 2023 06.
Article in English | MEDLINE | ID: mdl-37076563

ABSTRACT

BACKGROUND: Current strategies to inhibit androgen receptor (AR) are circumvented in castration-resistant prostate cancer (CRPC). Cyclin-dependent kinase 7 (CDK7) promotes AR signalling, in addition to established roles in cell cycle and global transcription, providing a rationale for its therapeutic targeting in CRPC. METHODS: The antitumour activity of CT7001, an orally bioavailable CDK7 inhibitor, was investigated across CRPC models in vitro and in xenograft models in vivo. Cell-based assays and transcriptomic analyses of treated xenografts were employed to investigate the mechanisms driving CT7001 activity, alone and in combination with the antiandrogen enzalutamide. RESULTS: CT7001 selectively engages with CDK7 in prostate cancer cells, causing inhibition of proliferation and cell cycle arrest. Activation of p53, induction of apoptosis, and suppression of transcription mediated by full-length and constitutively active AR splice variants contribute to antitumour efficacy in vitro. Oral administration of CT7001 represses growth of CRPC xenografts and significantly augments growth inhibition achieved by enzalutamide. Transcriptome analyses of treated xenografts indicate cell cycle and AR inhibition as the mode of action of CT7001 in vivo. CONCLUSIONS: This study supports CDK7 inhibition as a strategy to target deregulated cell proliferation and demonstrates CT7001 is a promising CRPC therapeutic, alone or in combination with AR-targeting compounds.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Nitriles/therapeutic use , Cyclin-Dependent Kinases/therapeutic use , Enzyme Inhibitors/therapeutic use , Cell Proliferation
3.
Clin Sci (Lond) ; 135(20): 2393-2408, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34622923

ABSTRACT

AMP-activated protein kinase (AMPK) plays a key role in the cellular response to low energy stress and has emerged as an attractive therapeutic target for tackling metabolic diseases. Whilst significant progress has been made regarding the physiological role of AMPK, its function in the kidney remains only partially understood. We use a mouse model expressing a constitutively active mutant of AMPK to investigate the effect of AMPK activation on kidney function in vivo. Kidney morphology and changes in gene and protein expression were monitored and serum and urine markers were measured to assess kidney function in vivo. Global AMPK activation resulted in an early-onset polycystic kidney phenotype, featuring collecting duct cysts and compromised renal function in adult mice. Mechanistically, the cystic kidneys had increased cAMP levels and ERK activation, increased hexokinase I (Hk I) expression, glycogen accumulation and altered expression of proteins associated with autophagy. Kidney tubule-specific activation of AMPK also resulted in a polycystic phenotype, demonstrating that renal tubular AMPK activation caused the cystogenesis. Importantly, human autosomal dominant polycystic kidney disease (ADPKD) kidney sections revealed similar protein localisation patterns to that observed in the murine cystic kidneys. Our findings show that early-onset chronic AMPK activation leads to a polycystic kidney phenotype, suggesting dysregulated AMPK signalling is a contributing factor in cystogenesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Kidney/enzymology , Polycystic Kidney Diseases/enzymology , AMP-Activated Protein Kinases/genetics , Adult , Age Factors , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclic AMP/metabolism , Energy Metabolism , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Genetic Predisposition to Disease , Hexokinase/metabolism , Humans , Kidney/pathology , Male , Mice, Transgenic , Phenotype , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/enzymology , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Signal Transduction
5.
Cell Rep ; 42(4): 112396, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37061917

ABSTRACT

Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome.


Subject(s)
AMP-Activated Protein Kinases , Prostatic Neoplasms , Male , Humans , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Lipogenesis , Lipid Metabolism , Prostatic Neoplasms/pathology
6.
Oncogene ; 38(17): 3216-3231, 2019 04.
Article in English | MEDLINE | ID: mdl-30626938

ABSTRACT

VCP/p97 regulates numerous cellular functions by mediating protein degradation through its segregase activity. Its key role in governing protein homoeostasis has made VCP/p97 an appealing anticancer drug target. Here, we provide evidence that VCP/p97 acts as a regulator of cellular metabolism. We found that VCP/p97 was tied to multiple metabolic processes on the gene expression level in a diverse range of cancer cell lines and in patient-derived multiple myeloma cells. Cellular VCP/p97 dependency to maintain proteostasis was increased under conditions of glucose and glutamine limitation in a range of cancer cell lines from different tissues. Moreover, glutamine depletion led to increased VCP/p97 expression, whereas VCP/p97 inhibition perturbed metabolic processes and intracellular amino acid turnover. GCN2, an amino acid-sensing kinase, attenuated stress signalling and cell death triggered by VCP/p97 inhibition and nutrient shortages and modulated ERK activation, autophagy, and glycolytic metabolite turnover. Together, our data point to an interconnected role of VCP/p97 and GCN2 in maintaining cancer cell metabolic and protein homoeostasis.


Subject(s)
Adenosine Triphosphatases/metabolism , Nuclear Proteins/metabolism , Nutrients/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteostasis/physiology , Valosin Containing Protein/metabolism , A549 Cells , Autophagy/physiology , Cell Line, Tumor , Gene Expression/physiology , Glucose/metabolism , Glutamine/metabolism , Humans , MAP Kinase Signaling System/physiology , MCF-7 Cells , Multiple Myeloma/metabolism , PC-3 Cells , Proteolysis , Signal Transduction/physiology
7.
Cancer Res ; 78(24): 6747-6761, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30242113

ABSTRACT

: New targets are required for treating prostate cancer, particularly castrate-resistant disease. Previous studies reported that calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) expression is increased in human prostate cancer. Here, we show that Camkk2 deletion or pharmacologic inhibition protects against prostate cancer development in a preclinical mouse model that lacks expression of prostate-specific Pten. In contrast, deletion of AMP-activated protein kinase (Ampk) ß1 resulted in earlier onset of adenocarcinoma development. These findings suggest for the first time that Camkk2 and Ampk have opposing effects in prostate cancer progression. Loss of CAMKK2 in vivo or in human prostate cancer cells reduced the expression of two key lipogenic enzymes, acetyl-CoA carboxylase and fatty acid synthase. This reduction was mediated via a posttranscriptional mechanism, potentially involving a decrease in protein translation. Moreover, either deletion of CAMKK2 or activation of AMPK reduced cell growth in human prostate cancer cells by inhibiting de novo lipogenesis. Activation of AMPK in a panel of human prostate cancer cells inhibited cell proliferation, migration, and invasion as well as androgen-receptor signaling. These findings demonstrate that CAMKK2 and AMPK have opposing effects on lipogenesis, providing a potential mechanism for their contrasting effects on prostate cancer progression in vivo. They also suggest that inhibition of CAMKK2 combined with activation of AMPK would offer an efficacious therapeutic strategy in treatment of prostate cancer. SIGNIFICANCE: These findings show that CAMKK2 and its downstream target AMPK have opposing effects on prostate cancer development and raise the possibility of a new combined therapeutic approach that inhibits CAMKK2 and activates AMPK.


Subject(s)
AMP-Activated Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Lipogenesis , Prostatic Neoplasms/pathology , Adenocarcinoma/genetics , Animals , Benzimidazoles/chemistry , CRISPR-Cas Systems , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Female , Gene Deletion , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Naphthalimides/chemistry , Neoplasm Invasiveness , Phosphorylation , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL