Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Anal Chem ; 94(35): 12167-12175, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36001648

ABSTRACT

pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.


Subject(s)
Nanowires , Electrodes , Gold , Hydrogen-Ion Concentration
2.
Anal Chem ; 93(32): 11259-11267, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34347442

ABSTRACT

The Virus BioResistor (VBR) is a biosensor capable of rapid and sensitive detection of small protein disease markers using a simple dip-and-read modality. For example, the bladder cancer-associated protein DJ-1 (22 kDa) can be detected in human urine within 1.0 min with a limit of detection (LOD) of 10 pM. The VBR uses engineered virus particles as receptors to recognize and selectively bind the protein of interest. These virus particles are entrained in a conductive poly(3,4-ethylenedioxythiophene) or PEDOT channel. The electrical impedance of the channel increases when the target protein is bound by the virus particles. But VBRs exhibit a sensitivity that is inversely related to the molecular weight of the protein target. Thus, large proteins, such as IgG antibodies (150 kDa), can be undetectable even at high concentrations. We demonstrate that the electrochemical overoxidation of the VBR's PEDOT channel increases its electrical impedance, conferring enhanced sensitivity for both small and large proteins. Overoxidation makes possible the detection of two antibodies, undetectable at a normal VBR, with a limit of detection of 40 ng/mL (250 pM), and a dynamic range for quantitation extending to 600 ng/mL.


Subject(s)
Biosensing Techniques , Bridged Bicyclo Compounds, Heterocyclic , Humans , Immunoglobulin G , Limit of Detection , Polymers
3.
Acc Chem Res ; 53(10): 2384-2394, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33001632

ABSTRACT

The 2018 Nobel Prize in Chemistry recognized in vitro evolution, including the development by George Smith and Gregory Winter of phage display, a technology for engineering the functional capabilities of antibodies into viruses. Such bacteriophages solve inherent problems with antibodies, including their high cost, thermal lability, and propensity to aggregate. While phage display accelerated the discovery of peptide and protein motifs for recognition and binding to proteins in a variety of applications, the development of biosensors using intact phage particles was largely unexplored in the early 2000s. Virus particles, 16.5 MDa in size and assembled from thousands of proteins, could not simply be substituted for antibodies in any existing biosensor architectures.Incorporating viruses into biosensors required us to answer several questions: What process will allow the incorporation of viruses into a functional bioaffinity layer? How can the binding of a protein disease marker to a virus particle be electrically transduced to produce a signal? Will the variable salt concentration of a bodily fluid interfere with electrical transduction? A completely new biosensor architecture and a new scheme for electrical transduction of the binding of molecules to viruses were required.This Account describes the highlights of a research program launched in 2006 that answered these questions. These efforts culminated in 2018 in the invention of a biosensor specifically designed to interface with virus particles: the Virus BioResistor (VBR). The VBR is a resistor consisting of a conductive polymer matrix in which M13 virus particles are entrained. The electrical impedance of this resistor, measured across 4 orders of magnitude in frequency, simultaneously measures the concentration of a target protein and the ionic conductivity of the medium in which the resistor is immersed. Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise ratio (S/N > 100) and excellent sensor-to-sensor reproducibility. Using this new device, we have measured the urinary bladder cancer biomarker nucleic acid deglycase (DJ-1) in urine samples. This optimized VBR is characterized by extremely low sensor-to-sensor coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a limit of quantitation of 30 pM, encompassing 4 orders of magnitude in concentration.


Subject(s)
Bacteriophage M13/isolation & purification , Biosensing Techniques/methods , Antibodies/immunology , Bacteriophage M13/chemistry , Bacteriophage M13/immunology , Bacteriophage M13/metabolism , Biomarkers, Tumor/urine , Biosensing Techniques/instrumentation , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electrodes , Humans , Limit of Detection , Nanowires/chemistry , Neoplasms/diagnosis , Peptide Library , Polymers/chemistry , Protein Deglycase DJ-1/urine , Quartz Crystal Microbalance Techniques , Reproducibility of Results , Signal-To-Noise Ratio
4.
Anal Chem ; 92(9): 6654-6666, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32252524

ABSTRACT

DJ-1, a 20.7 kDa protein, is overexpressed in people who have bladder cancer (BC). Its elevated concentration in urine allows it to serve as a marker for BC. However, no biosensor for the detection of DJ-1 has been demonstrated. Here, we describe a virus bioresistor (VBR) capable of detecting DJ-1 in urine at a concentration of 10 pM in 1 min. The VBR consists of a pair of millimeter-scale gold electrodes that measure the electrical impedance of an ultrathin (≈ 150-200 nm), two-layer polymeric channel. The top layer of this channel (90-105 nm in thickness) consists of an electrodeposited virus-PEDOT (PEDOT is poly(3,4-ethylenedioxythiophene)) composite containing embedded M13 virus particles that are engineered to recognize and bind to the target protein of interest, DJ-1. The bottom layer consists of spin-coated PEDOT-PSS (poly(styrenesulfonate)). Together, these two layers constitute a current divider. We demonstrate here that reducing the thickness of the bottom PEDOT-PSS layer increases its resistance and concentrates the resistance drop of the channel in the top virus-PEDOT layer, thereby increasing the sensitivity of the VBR and enabling the detection of DJ-1. Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise (S/N > 100) and excellent sensor-to-sensor reproducibility characterized by coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a concentration of 30 pM, near the 10 pM limit of detection (LOD), encompassing four orders of magnitude in concentration.


Subject(s)
Bacteriophage M13/chemistry , Biomarkers, Tumor/urine , Biosensing Techniques , Protein Deglycase DJ-1/urine , Urinary Bladder Neoplasms/urine , Humans , Time Factors
5.
Nano Lett ; 18(6): 3623-3629, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29718676

ABSTRACT

The virus bioresistor (VBR) is a chemiresistor that directly transfers information from virus particles to an electrical circuit. Specifically, the VBR enables the label-free detection of a target protein that is recognized and bound by filamentous M13 virus particles, each with dimensions of 6 nm ( w) × 1 µm ( l), entrained in an ultrathin (∼250 nm) composite virus-polymer resistor. Signal produced by the specific binding of virus to target molecules is monitored using the electrical impedance of the VBR: The VBR presents a complex impedance that is modeled by an equivalent circuit containing just three circuit elements: a solution resistance ( Rsoln), a channel resistance ( RVBR), and an interfacial capacitance ( CVBR). The value of RVBR, measured across 5 orders of magnitude in frequency, is increased by the specific recognition and binding of a target protein to the virus particles in the resistor, producing a signal Δ RVBR. The VBR concept is demonstrated using a model system in which human serum albumin (HSA, 66 kDa) is detected in a phosphate buffer solution. The VBR cleanly discriminates between a change in the electrical resistance of the buffer, measured by Rsoln, and selective binding of HSA to virus particles, measured by RVBR. The Δ RVBR induced by HSA binding is as high as 200 Ω, contributing to low sensor-to-sensor coefficients-of-variation (<15%) across the entire calibration curve for HSA from 7.5 nM to 900 nM. The response time for the VBR is 3-30 s.


Subject(s)
Bacteriophage M13/chemistry , Biosensing Techniques/instrumentation , Serum Albumin, Human/analysis , Virion/chemistry , Biosensing Techniques/methods , Electric Impedance , Equipment Design , Humans , Limit of Detection
6.
Anal Chem ; 90(15): 9338-9346, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29976051

ABSTRACT

A new type of chemiresistor, the impedance-transduced chemiresistor (ITCR), is described for the rapid analysis of glucose. The ITCR exploits porous, high surface area, fluorine-doped carbon nanofibers prepared by electrospinning of fluorinated polymer nanofibers followed by pyrolysis. These nanofibers are functionalized with a boronic acid receptor and stabilized by Nafion to form the ITCR channel for glucose detection. The recognition and binding of glucose by the ITCR is detected by measuring its electrical impedance at a single frequency. The analysis frequency is selected by measuring the signal-to-noise ( S/ N) for glucose detection across 5 orders of magnitude, evaluating both the imaginary and real components of the complex impedance. On the basis of this analysis, an optimal frequency of 13 kHz is selected for glucose detection, yielding an S/ N ratio of 60-100 for [glucose] = 5 mM using the change in the total impedance, Δ Z. The resulting ITCR glucose sensor shows a rapid analysis time (<8 s), low coefficient of variation for a series of sensors (<10%), an analysis range of 50 µM to 5 mM, and excellent specificity versus fructose, ascorbic acid, and uric acid. These metrics for the ITCR are obtained using a sample size as small as 5 µL.


Subject(s)
Blood Glucose/analysis , Carbon/chemistry , Electric Impedance , Glucose/analysis , Biosensing Techniques , Electrochemical Techniques , Microscopy, Electron/methods , Porosity , Proof of Concept Study , Spectrum Analysis/methods , Surface Properties , Tears/chemistry
7.
Acc Chem Res ; 50(8): 1902-1910, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28777545

ABSTRACT

Hydrogen gas (H2) is odorless and flammable at concentrations above 4% (v/v) in air. Sensors capable of detecting it rapidly at lower concentrations are needed to "sniff" for leaked H2 wherever it is used. Electrical H2 sensors are attractive because of their simplicity and low cost: Such sensors consist of a metal (usually palladium, Pd) resistor. Exposure to H2 causes a resistance increase, as Pd metal is converted into more resistive palladium hydride (PdHx). Sensors based upon Pd alloy films, developed in the early 1990s, were both too slow and too insensitive to meet the requirements of H2 safety sensing. In this Account, we describe the development of H2 sensors that are based upon electrodeposited nanomaterials. This story begins with the rise to prominence of nanowire-based sensors in 2001 and our demonstration that year of the first nanowire-based H2 sensor. The Pd nanowires used in these experiments were prepared by electrodepositing Pd at linear step-edge defects on a graphite electrode surface. In 2005, lithographically patterned nanowire electrodeposition (LPNE) provided the capability to pattern single Pd nanowires on dielectrics using electrodeposition. LPNE also provided control over the nanowire thickness (±1 nm) and width (±10-15%). Using single Pd nanowires, it was demonstrated in 2010 that smaller nanowires responded more rapidly to H2 exposure. Heating the nanowire using Joule self-heating (2010) also dramatically accelerated sensor response and recovery, leading to the conclusion that thermally activated H2 chemisorption and desorption of H2 were rate-limiting steps in sensor response to and recovery from H2 exposure. Platinum (Pt) nanowires, studied in 2012, showed an inverted resistance response to H2 exposure, that is, the resistance of Pt nanowires decreased instead of increased upon H2 exposure. H2 dissociatively chemisorbs at a Pt surface to form Pt-H, but in contrast to Pd, it stays on the Pt surface. Pt nanowires showed a faster response to H2 exposure than Pd nanowires operating at the same elevated temperature, but they had a surprising disadvantage: The resistance change observed for Pt nanowires was exactly the same for all H2 concentrations. Electron surface scattering was implicated in the mechanism for these sensors. Work on Pt nanowires lead in 2015 to the preparation of Pd nanowires that were electrochemically modified with thin Pt layers (Pd@Pt nanowires). Relative to Pd nanowires, Pt@Pd nanowires showed accelerated response and recovery to H2 while retaining the same high sensitivity to H2 concentration seen for sensors based upon pure Pd nanowires. A new chapter in H2 sensing (2017) involves the replacement of metal nanowires with carbon nanotube ropes decorated with electrodeposited Pd nanoparticles (NPs). Even higher sensitivity and faster sensor response and recovery are enabled by this sensor architecture. Sensor properties are strongly dependent on the size and size monodispersity of the Pd NPs, with smaller NPs yielding higher sensitivity and more rapid response/recovery. We hope the lessons learned from this science over 15 years will catalyze the development of sensors based upon electrodeposited nanomaterials for gases other than H2.

8.
Anal Chem ; 89(2): 1373-1381, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27989106

ABSTRACT

The label-free detection of human serum albumin (HSA) in aqueous buffer is demonstrated using a simple, monolithic, two-electrode electrochemical biosensor. In this device, both millimeter-scale electrodes are coated with a thin layer of a composite containing M13 virus particles and the electronically conductive polymer poly(3,4-ethylenedioxy thiophene) or PEDOT. These virus particles, engineered to selectively bind HSA, serve as receptors in this biosensor. The resistance component of the electrical impedance, Zre, measured between these two electrodes provides electrical transduction of HSA binding to the virus-PEDOT film. The analysis of sample volumes as small as 50 µL is made possible using a microfluidic cell. Upon exposure to HSA, virus-PEDOT films show a prompt increase in Zre within 5 s and a stable Zre signal within 15 min. HSA concentrations in the range from 100 nM to 5 µM are detectable. Sensor-to-sensor reproducibility of the HSA measurement is characterized by a coefficient-of-variance (COV) ranging from 2% to 8% across this entire concentration range. In addition, virus-PEDOT sensors successfully detected HSA in synthetic urine solutions.


Subject(s)
Bacteriophage M13/chemistry , Biosensing Techniques/instrumentation , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Polymers/chemistry , Serum Albumin, Human/urine , Virion/chemistry , Biosensing Techniques/methods , Electric Conductivity , Electric Impedance , Electrodes , Equipment Design , Humans , Limit of Detection , Reproducibility of Results , Serum Albumin, Human/analysis
9.
Langmuir ; 33(37): 9324-9332, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28453943

ABSTRACT

The influence of hexamethylenetetraamine (HMTA) on the morphology of δ-MnO2 and its properties for electrical energy storage are investigated-specifically for ultrathick δ-MnO2 layers in the micron scale. Planar arrays of gold@δ-MnO2, core@shell nanowires, were prepared by electrodeposition with and without the HMTA and their electrochemical properties were evaluated. HMTA alters the MnO2 in three ways: First, it creates a more open morphology for the MnO2 coating, characterized by "petals" with a thickness of 6 to 9 nm, rather than much thinner δ-MnO2 sheets seen in the absence of HMTA. Second, the electronic conductivity of the δ-MnO2 is increased by an order of magnitude. Third, δ-MnO2 prepared in HMTA shows a (001) interlayer spacing that is expanded by ≈30% possibly accelerating Li transport. The net effect of "HTMA doping" is to dramatically improve high rate performance, culminating in an increase in the specific capacity for the thickest MnO2 shells examined here by a factor of 15 at 100 mV/s.

11.
Nano Lett ; 15(9): 5861-7, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26225457

ABSTRACT

We describe the preparation and properties of a coaxial, three-layer, gold-CdSe-gold nanowire 30 µm in length that functions as a monolithic photodetector. The gold (Au) electrode core of this sandwich structure is prepared using the lithographically patterned nanowire electrodeposition (LPNE) method on a glass surface. A CdSe shell of defined thickness, dCdSe, from 200 to 280 nm is then electrodeposited on this Au nanowire. Finally, a conformal gold layer is electrodeposited on top of the CdSe shell. The two concentric gold electrodes within this architecture measure the photoconductivity of the ultrathin CdSe absorbing layer in the direction orthogonal to the nanowire axis. This architecture enables accelerated response/recovery of the nanowire to light while simultaneously maximizing the photoconductive gain without relinquishing any of the photoresponsive area of a "bare" nanowire. Characterization by scanning electron microscopy (SEM) of focused ion beam (FIB) cross sections together with electron dispersive X-ray spectroscopy (EDS) reveal the distinct core-multishell nanostructure, layer thicknesses, and layer compositions. The position-dependent photoresponse along the axis of the nanowire, probed using a laser spot, shows that the Au nanoshell significantly enhances the photocurrent. The performance of Au-CdSe-Au core-multishell nanowire photodetectors depend sensitively on the thickness of CdSe nanoshell over the range of from 200 nm < dCdSe < 280 nm. The highest performance was obtained for the dCdSe = 250 nm this device, which showed a photoconductive gain of 2172, a responsivity of 209 A·W(-1), a response time of 17 µs, and a recovery time of 96 µs.

12.
Anal Chem ; 87(22): 11492-500, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26499338

ABSTRACT

Arrays of nanowires of an electronically conductive polymeric affinity medium tailored to the detection of Fe(III) are prepared, and their properties for detecting Fe(III) are evaluated. This polymeric affinity medium consists of poly(3,4-ethylenedioxythiophene) (PEDOT) into which an iron chelator, deferoxamine (DFA), has been doped during the polymerization process. PEDOT-DFA nanowires are potentiostatically deposited from a solution containing both EDOT and DFA using lithographically patterned nanowire electrodeposition (LPNE). The through-nanowire electrical resistance of PEDOT-DFA nanowires is measured as a function of the Fe(III) concentration. In parallel with measurements on PEDOT-DFA nanowire arrays, the electrochemical impedance of PEDOT-DFA films is characterized as a function of the Fe(III) concentration and the frequency of the impedance measurement in order to better understand the mechanism of transduction. PEDOT-DFA nanowires detect Fe(III) from 10(-4) to 10(-8) M with a limit of detection of 300 pM (calculated) and 10 nM (measured).

14.
J Am Chem Soc ; 135(20): 7761-7, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23614709

ABSTRACT

The sensitive detection of cancer biomarkers in urine could revolutionize cancer diagnosis and treatment. Such detectors must be inexpensive, easy to interpret, and sensitive. This report describes a bioaffinity matrix of viruses integrated into PEDOT films for electrochemical sensing of prostate-specific membrane antigen (PSMA), a prostate cancer biomarker. High sensitivity to PSMA resulted from synergistic action by two different ligands to PSMA on the same phage particle. One ligand was genetically encoded, and the secondary recognition ligand was chemically synthesized to wrap around the phage. The dual ligands result in a bidentate binder with high-copy, dense ligand display for enhanced PSMA detection through a chelate-based avidity effect. Biosensing with virus-PEDOT films provides a 100 pM limit of detection for PSMA in synthetic urine without requiring enzymatic or other amplification.


Subject(s)
Alkynes , Antigens, Surface/urine , Azides , Biomarkers, Tumor/urine , Biosensing Techniques/methods , Glutamate Carboxypeptidase II/urine , Prostatic Neoplasms/urine , Sulfhydryl Compounds , Alkynes/chemistry , Azides/chemistry , Bacteriophages/chemistry , Bacteriophages/genetics , Cyclization , Humans , Ligands , Limit of Detection , Male , Models, Molecular , Molecular Structure , Sulfhydryl Compounds/chemistry
15.
Langmuir ; 29(47): 14728-32, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24138003

ABSTRACT

Development of electrocatalysts for the conversion of water to dioxygen is important in a variety of chemical applications. Despite much research in this field, there are still several fundamental issues about the electrocatalysts that need to be resolved. Two such problems are that the catalyst mass loading on the electrode is subject to large uncertainties and the wetted surface area of the catalyst is often unknown and difficult to determine. To address these topics, a cobalt monolayer was prepared on a gold electrode by underpotential deposition and used to probe its efficiency for the oxidation of water. This electrocatalyst was characterized by atomic force microscopy, grazing-incidence X-ray diffraction, and X-ray photoelectron spectroscopy at various potentials to determine if changes occur on the surface during catalysis. An enhancement of current was observed upon addition of PO4(3-) ions, suggesting an effect from surface-bound ligands on the efficiency of water oxidation. At 500 mV overpotential, current densities of 0.20, 0.74, and 2.4 mA/cm(2) for gold, cobalt, and cobalt in PO4(3-) were observed. This approach thus provided electrocatalysts whose surface areas and activity can be accurately determined.

16.
Nano Lett ; 12(6): 2924-30, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22524464

ABSTRACT

The performance of a single platinum (Pt) nanowire for detecting H(2) in air is reported. A Pt nanowire shows no resistance change upon exposure to H(2) in N(2), but H(2) exposure in air causes a reversible resistance decrease for H(2) concentrations above 10 ppm. The amplitude of the resistance change induced by H(2) exposure and the time rate of change of the nanowire resistance both increased with increasing temperature from 298 to 550 K. This resistance decrease of the Pt nanowire in the presence of H(2) results from reduced electron diffuse scattering at hydrogen-covered Pt surfaces as compared with oxygen-covered platinum surfaces, we hypothesize. The properties for the detection of H(2) in air of single Pt and Pd nanowires of similar size are compared in this study. Pt nanowires have a limit-of-detection for H(2) (LOD(H(2))) of 10 ppm; 3 orders of magnitude lower than for Pd nanowires of the same size, as well as a response time that is 1/100th of Pd for [H(2)] ≈ 1%.


Subject(s)
Air/analysis , Conductometry/instrumentation , Hydrogen/analysis , Microchemistry/instrumentation , Nanostructures/chemistry , Platinum/chemistry , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure , Particle Size , Surface Properties
17.
Nano Lett ; 12(3): 1729-35, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22360286

ABSTRACT

The formation of a nanometer-scale chemically responsive junction (CRJ) within a silver nanowire is described. A silver nanowire was first prepared on glass using the lithographically patterned nanowire electrodeposition method. A 1-5 nm gap was formed in this wire by electromigration. Finally, this gap was reconnected by applying a voltage ramp to the nanowire resulting in the formation of a resistive, ohmic CRJ. Exposure of this CRJ-containing nanowire to ammonia (NH(3)) induced a rapid (<30 s) and reversible resistance change that was as large as ΔR/R(0) = (+)138% in 7% NH(3) and observable down to 500 ppm NH(3). Exposure to water vapor produced a weaker resistance increase of ΔR/R(0,H(2)O) = (+)10-15% (for 2.3% water) while nitrogen dioxide (NO(2)) exposure induced a stronger concentration-normalized resistance decrease of ΔR/R(0,NO(2)) = (-)10-15% (for 500 ppm NO(2)). The proposed mechanism of the resistance response for a CRJ, supported by temperature-dependent measurements of the conductivity for CRJs and density functional theory calculations, is that semiconducting p-type Ag(x)O is formed within the CRJ and the binding of molecules to this Ag(x)O modulates its electrical resistance.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Conductometry/instrumentation , Nanostructures/chemistry , Semiconductors , Silver/chemistry , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure
18.
ACS Sens ; 8(7): 2869-2878, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37415388

ABSTRACT

A single platinum nanowire (PtNW) chemiresistive sensor for ethylene gas is reported. In this application, the PtNW performs three functions: (1) Joule self-heating to a specified temperature, (2) in situ resistance-based temperature measurement, and (3) detection of ethylene in air as a resistance change. Ethylene gas in air is detected as a reduction in nanowire resistance by up to 4.5% for concentrations ranging from 1 to 30 ppm in an optimum NW temperature range from 630 to 660 K. This response is rapid (30-100 s), reversible, and reproducible for repetitive ethylene pulses. A threefold increase in signal amplitude is observed as the NW thickness is reduced from 60 to 20 nm, commensurate with a signal transduction mechanism involving surface electron scattering.


Subject(s)
Nanowires , Gases , Platinum , Ethylenes
19.
Anal Chem ; 84(11): 5053-8, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22533970

ABSTRACT

Wafer scale (cm(2)) arrays and networks of nanochannels were created in polydimethylsiloxane (PDMS) from a surface pattern of electrodeposited gold nanowires in a master-replica process and characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM), and fluorescence imaging measurements. Patterns of gold nanowires with cross-sectional dimensions as small as 50 nm in height and 100 nm in width were prepared on silica substrates using the process of lithographically patterned nanowire electrodeposition (LPNE). These nanowire patterns were then employed as masters for the fabrication of inverse replica nanochannels in a special formulation of PDMS. SEM and AFM measurements verified a linear correlation between the widths and heights of the nanowires and nanochannels over a range of 50 to 500 nm. The PDMS replica was then oxygen plasma-bonded to a glass substrate in order to create a linear array of nanofluidic channels (up to 1 mm in length) filled with solutions of either fluorescent dye or 20 nm diameter fluorescent polymer nanoparticles. Nanochannel continuity and a 99% fill success rate was determined from the fluorescence imaging measurements, and the electrophoretic injection of both dye and nanoparticles in the nanochannel arrays was also demonstrated. Employing a double LPNE fabrication method, this master-replica process was also used to create a large two-dimensional network of crossed nanofluidic channels.


Subject(s)
Gold/chemistry , Nanotechnology/methods , Nanowires/chemistry , Dimethylpolysiloxanes/chemistry , Electroplating , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanowires/ultrastructure , Printing , Silicon Dioxide/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL