ABSTRACT
BACKGROUND: CEP290-associated inherited retinal degeneration causes severe early-onset vision loss due to pathogenic variants in CEP290. EDIT-101 is a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing complex designed to treat inherited retinal degeneration caused by a specific damaging variant in intron 26 of CEP290 (IVS26 variant). METHODS: We performed a phase 1-2, open-label, single-ascending-dose study in which persons 3 years of age or older with CEP290-associated inherited retinal degeneration caused by a homozygous or compound heterozygous IVS26 variant received a subretinal injection of EDIT-101 in the worse (study) eye. The primary outcome was safety, which included adverse events and dose-limiting toxic effects. Key secondary efficacy outcomes were the change from baseline in the best corrected visual acuity, the retinal sensitivity detected with the use of full-field stimulus testing (FST), the score on the Ora-Visual Navigation Challenge mobility test, and the vision-related quality-of-life score on the National Eye Institute Visual Function Questionnaire-25 (in adults) or the Children's Visual Function Questionnaire (in children). RESULTS: EDIT-101 was injected in 12 adults 17 to 63 years of age (median, 37 years) at a low dose (in 2 participants), an intermediate dose (in 5), or a high dose (in 5) and in 2 children 9 and 14 years of age at the intermediate dose. At baseline, the median best corrected visual acuity in the study eye was 2.4 log10 of the minimum angle of resolution (range, 3.9 to 0.6). No serious adverse events related to the treatment or procedure and no dose-limiting toxic effects were recorded. Six participants had a meaningful improvement from baseline in cone-mediated vision as assessed with the use of FST, of whom 5 had improvement in at least one other key secondary outcome. Nine participants (64%) had a meaningful improvement from baseline in the best corrected visual acuity, the sensitivity to red light as measured with FST, or the score on the mobility test. Six participants had a meaningful improvement from baseline in the vision-related quality-of-life score. CONCLUSIONS: The safety profile and improvements in photoreceptor function after EDIT-101 treatment in this small phase 1-2 study support further research of in vivo CRISPR-Cas9 gene editing to treat inherited retinal degenerations due to the IVS26 variant of CEP290 and other genetic causes. (Funded by Editas Medicine and others; BRILLIANCE ClinicalTrials.gov number, NCT03872479.).
Subject(s)
Antigens, Neoplasm , Cell Cycle Proteins , Cytoskeletal Proteins , Gene Editing , Retinal Degeneration , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , CRISPR-Cas Systems , Cytoskeletal Proteins/genetics , Genetic Therapy/adverse effects , Injections, Intraocular , Quality of Life , Retina , Retinal Degeneration/therapy , Retinal Degeneration/genetics , Visual AcuityABSTRACT
Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.
Subject(s)
Computer Simulation , Pedigree , Retinal Diseases , Humans , Retinal Diseases/genetics , Female , Male , Mutation , Genes, Dominant , Genetic Predisposition to Disease , Computational Biology/methods , Phenotype , AdultABSTRACT
Despite increasing success in determining genetic diagnosis for patients with inherited retinal diseases (IRDs), mutations in about 30% of the IRD cases remain unclear or unsettled after targeted gene panel or whole exome sequencing. In this study, we aimed to investigate the contributions of structural variants (SVs) to settling the molecular diagnosis of IRD with whole-genome sequencing (WGS). A cohort of 755 IRD patients whose pathogenic mutations remain undefined were subjected to WGS. Four SV calling algorithms including include MANTA, DELLY, LUMPY and CNVnator were used to detect SVs throughout the genome. All SVs identified by any one of these four algorithms were included for further analysis. AnnotSV was used to annotate these SVs. SVs that overlap with known IRD-associated genes were examined with sequencing coverage, junction reads and discordant read pairs. Polymerase Chain Reaction (PCR) followed by Sanger sequencing was used to further confirm the SVs and identify the breakpoints. Segregation of the candidate pathogenic alleles with the disease was performed when possible. A total of 16 candidate pathogenic SVs were identified in 16 families, including deletions and inversions, representing 2.1% of patients with previously unsolved IRDs. Autosomal dominant, autosomal recessive and X-linked inheritance of disease-causing SVs were observed in 12 different genes. Among these, SVs in CLN3, EYS and PRPF31 were found in multiple families. Our study suggests that the contribution of SVs detected by short-read WGS is about 0.25% of our IRD patient cohort and is significantly lower than that of single nucleotide changes and small insertions and deletions.
Subject(s)
Retinal Diseases , Humans , Retinal Diseases/genetics , Mutation , Whole Genome Sequencing , Exome Sequencing , Alleles , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics , Eye Proteins/geneticsABSTRACT
BACKGROUND: Leber congenital amaurosis 1 (LCA1), caused by mutations in GUCY2D, is a rare inherited retinal disease that typically causes blindness in early childhood. The aim of this study was to evaluate the safety and preliminary efficacy of ascending doses of ATSN-101, a subretinal AAV5 gene therapy for LCA1. METHODS: 15 patients with genetically confirmed biallelic mutations in GUCY2D were included in this phase 1/2 study. All patients received unilateral subretinal injections of ATSN-101. In the dose-escalation phase, three adult cohorts (n=3 each) were treated with three ascending doses: 1·0â×â1010 vg/eye (low dose), 3·0â×â1010 vg/eye (middle dose), and 1·0â×â1011 vg/eye (high dose). In the dose-expansion phase, one adult cohort (n=3) and one paediatric cohort (n=3) were treated at the high dose. The primary endpoint was the incidence of treatment-emergent adverse events (TEAEs), and secondary endpoints included full-field stimulus test (FST) and best-corrected visual acuity (BCVA). A multi-luminance mobility test (MLMT) was also done. Data through the 12-month main study period are reported. FINDINGS: Patients were enrolled between Sept 12, 2019, and May 5, 2022. A total of 68 TEAEs were observed, 56 of which were related to the surgical procedure. No serious TEAE was related to the study drug. Ocular inflammation was mild and reversible with steroid treatment. For patients who received the high dose, mean change in dark-adapted FST was 20·3 decibels (dB; 95% CI 6·6 to 34·0) for treated eyes and 1·1 dB (-3·7 to 5·9) for untreated eyes at month 12 (white stimulus); improvements were first observed at day 28 and persisted over 12 months (p=0·012). Modest improvements in BCVA were also observed (p=0·10). Three of six patients who received the high dose and did the MLMT achieved the maximum score in the treated eye. INTERPRETATION: ATSN-101 is well tolerated 12 months after treatment, with no drug-related serious adverse events. Clinically significant improvements in retinal sensitivity were sustained in patients receiving the high dose. FUNDING: Atsena Therapeutics.
Subject(s)
Genetic Therapy , Guanylate Cyclase , Leber Congenital Amaurosis , Receptors, Cell Surface , Adolescent , Adult , Child , Humans , Genetic Therapy/methods , Guanylate Cyclase/genetics , Injections, Intraocular , Leber Congenital Amaurosis/genetics , Mutation , Receptors, Cell Surface/genetics , Treatment Outcome , Visual AcuityABSTRACT
PURPOSE: Inherited retinal diseases (IRDs) are a group of monogenic conditions that can lead to progressive blindness. Their missing heritability is still considerable, due in part to the presence of disease genes that await molecular identification. The purpose of this work was to identify novel genetic associations with IRDs. METHODS: Patients underwent a comprehensive ophthalmological evaluation using standard-of-care tests, such as detailed retinal imaging (macular optical coherence tomography and short-wavelength fundus autofluorescence) and electrophysiological testing. Exome and genome sequencing, as well as computer-assisted data analysis were used for genotyping and detection of DNA variants. A minigene-driven splicing assay was performed to validate the deleterious effects of 1 of such variants. RESULTS: We identified 8 unrelated families from Hungary, the United States, Israel, and The Netherlands with members presenting with a form of autosomal recessive and nonsyndromic retinal degeneration, predominantly described as rod-cone dystrophy but also including cases of cone/cone-rod dystrophy. Age of disease onset was very variable, with some patients experiencing first symptoms during their fourth decade of life or later. Myopia greater than 5 diopters was present in 5 of 7 cases with available refractive data, and retinal detachment was reported in 2 cases. All ascertained patients carried biallelic loss-of-function variants in UBAP1L (HGNC: 40028), a gene with unknown function and with homologies to UBAP1, encoding a protein involved in ubiquitin metabolism. One of these pathogenic variants, the intronic NM_001163692.2:c.910-7G>A substitution, was identified in 5 unrelated families. Minigene-driven splicing assays in HEK293T cells confirmed that this DNA change is responsible for the creation of a new acceptor splice site, resulting in aberrant splicing. CONCLUSION: We identified UBAP1L as a novel IRD gene. Although its function is currently unknown, UBAP1L is almost exclusively expressed in photoreceptors and the retinal pigment epithelium, hence possibly explaining the link between pathogenic variants in this gene and an ocular phenotype.
Subject(s)
Adaptor Proteins, Signal Transducing , Pedigree , Retinal Degeneration , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , Cone-Rod Dystrophies/genetics , Genes, Recessive , Genetic Predisposition to Disease , Hungary , Loss of Function Mutation , Retinal Degeneration/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolismABSTRACT
PURPOSE: Cotoretigene toliparvovec (BIIB112/AAV8-RPGR) is an investigational vector-based gene therapy designed to provide a full-length, codon-optimized retinitis pigmentosa GTPase regulator (RPGR) protein to individuals with RPGR-associated X-linked retinitis pigmentosa (XLRP). We assessed efficacy and tolerability of cotoretigene toliparvovec subretinal gene therapy. DESIGN: Part 2 of the XIRIUS trial (ClinicalTrials.gov identifier, NCT03116113) was a phase 2/3, 12-month, randomized (1:1:1) dose-expansion study. PARTICIPANTS: Male patients ≥10 years of age with RPGR-associated XLRP were included. METHODS: Participants were randomized 1:1:1 to receive low-dose subretinal cotoretigene toliparvovec (5 × 1010 vector genomes/eye), high-dose cotoretigene toliparvovec (2.5 × 1011 vector genomes/eye) or to be an untreated control participant. MAIN OUTCOME MEASURES: The primary end point was the percentage of participants meeting microperimetry responder criteria (≥ 7-dB improvement at ≥ 5 of 16 central loci). Secondary end points included change from baseline in retinal sensitivity at the central 16 loci and the entire 68 loci at 12 months and change from baseline in low-luminance visual acuity (LLVA) at 12 months, as well as the proportion of eyes with a ≥ 15-Early Treatment Diabetic Retinopathy Study ETDRS letter LLVA and ≥ 10-ETDRS letter LLVA change from baseline at month 12. RESULTS: Because of the impact of the COVID-19 pandemic, enrollment ended before reaching the initial target, leaving the trial underpowered. Twenty-nine participants were included (low-dose group, n = 10; high-dose group, n = 10; control group, n = 9). At month 12, the percentage of participants meeting microperimetry responder criteria was not significantly different between either cotoretigene toliparvovec group (low dose, 37.5% [P = 0.3181]; high dose, 25.0% [P = 0.5177]) and the control group (22.2%). However, the mean change from baseline in microperimetry sensitivity improved significantly with the low-dose group versus the control group at month 12 (P = 0.0350). Significant improvement in LLVA occurred in the low-dose group versus the control group at month 12 (33.3% difference [80% confidence interval, 14.7%-55.2%]; P = 0.0498). Three ocular-related serious adverse events (SAEs) occurred in the low-dose group versus 7 SAEs in the high-dose group. CONCLUSIONS: The primary microperimetry end point was not met. Significant improvements in LLVA and mean microperimetry were observed compared with controls and fewer SAEs occured with low-dose compared with high dose cotoretigene toliparvovec. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Subject(s)
Eye Proteins , Genetic Therapy , Genetic Vectors , Recombinant Proteins , Retinitis Pigmentosa , Visual Acuity , Adolescent , Adult , Humans , Male , Middle Aged , Young Adult , Dependovirus/genetics , Electroretinography , Eye Proteins/administration & dosage , Eye Proteins/adverse effects , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/physiopathology , Tomography, Optical Coherence , Visual Acuity/physiology , Visual Fields/physiologyABSTRACT
Long chain 3-hydroxyacyl-CoA dehydrogenase (LCHADD) is the only fatty acid oxidation disorder to develop a progressive chorioretinopathy resulting in vision loss; newborn screening (NBS) for this disorder began in the United States around 2004. We compared visual outcomes among 40 participants with LCHADD or trifunctional protein deficiency diagnosed symptomatically to those who were diagnosed via NBS or a family history. Participants completed ophthalmologic testing including measures of visual acuity, electroretinograms (ERG), fundal imaging, contrast sensitivity, and visual fields. Records were reviewed to document medical and treatment history. Twelve participants presented symptomatically with hypoglycemia, failure to thrive, liver dysfunction, cardiac arrest, or rhabdomyolysis. Twenty eight were diagnosed by NBS or due to a family history of LCHADD. Participants diagnosed symptomatically were older but had similar percent males and genotypes as those diagnosed by NBS. Treatment consisted of fasting avoidance, dietary long-chain fat restriction, MCT, C7, and/or carnitine supplementation. Visual acuity, rod- and cone-driven amplitudes on ERG, contrast sensitivity scores, and visual fields were all significantly worse among participants diagnosed symptomatically compared to NBS. In mixed-effects models, both age and presentation (symptomatic vs. NBS) were significant independent factors associated with visual outcomes. This suggests that visual outcomes were improved by NBS, but there was still lower visual function with advancing age in both groups. Early diagnosis and treatment by NBS is associated with improved visual outcomes and retinal function compared to participants who presented symptomatically. Despite the impact of early intervention, chorioretinopathy was greater with advancing age, highlighting the need for novel treatments.
Subject(s)
Early Diagnosis , Lipid Metabolism, Inborn Errors , Mitochondrial Trifunctional Protein , Neonatal Screening , Retinal Diseases , Visual Acuity , Humans , Male , Female , Infant, Newborn , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/therapy , Child , Retinal Diseases/diagnosis , Retinal Diseases/genetics , Mitochondrial Trifunctional Protein/deficiency , Adult , Infant , Child, Preschool , Adolescent , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Young Adult , Carnitine/analogs & derivatives , Carnitine/therapeutic use , Electroretinography , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , 3-Hydroxyacyl CoA Dehydrogenases/deficiency , 3-Hydroxyacyl CoA Dehydrogenases/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Treatment Outcome , Rhabdomyolysis/diagnosis , Rhabdomyolysis/genetics , Nervous System DiseasesABSTRACT
PURPOSE OF REVIEW: The purpose of this review was to provide a summary of currently available retinal imaging and visual function testing methods for assessing inherited retinal degenerations (IRDs), with the emphasis on the application of deep learning (DL) approaches to assist the determination of structural biomarkers for IRDs. RECENT FINDINGS: (clinical trials for IRDs; discover effective biomarkers as endpoints; DL applications in processing retinal images to detect disease-related structural changes). SUMMARY: Assessing photoreceptor loss is a direct way to evaluate IRDs. Outer retinal layer structures, including outer nuclear layer, ellipsoid zone, photoreceptor outer segment, RPE, are potential structural biomarkers for IRDs. More work may be needed on structure and function relationship.
Subject(s)
Biomarkers , Deep Learning , Retinal Degeneration , Humans , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Tomography, Optical Coherence/methodsABSTRACT
We assessed genotype-phenotype correlations among the visual, auditory, and olfactory phenotypes of 127 participants with Usher syndrome (USH2) (n =80) or nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) (n = 47) due to USH2A variants, using clinical data and molecular diagnostics from the Rate of Progression in USH2A Related Retinal Degeneration (RUSH2A) study. USH2A truncating alleles were associated with USH2 and had a dose-dependent effect on hearing loss severity with no effect on visual loss severity within the USH2 subgroup. A group of missense alleles in an interfibronectin domain appeared to be hypomorphic in ARRP. These alleles were associated with later age of onset, larger visual field area, better sensitivity thresholds, and better electroretinographic responses. No effect of genotype on the severity of olfactory deficits was observed. This study unveils a unique, tissue-specific USH2A allelic hierarchy with important prognostic implications for patient counseling and treatment trial endpoints. These findings may inform clinical care or research approaches in others with allelic disorders or pleiotropic phenotypes.
Subject(s)
Retinitis Pigmentosa , Usher Syndromes , Extracellular Matrix Proteins/genetics , Genetic Association Studies , Humans , Mutation , Retinitis Pigmentosa/genetics , Usher Syndromes/geneticsABSTRACT
Retinal damage has been associated with increased injection pressure during subretinal gene therapy delivery in various animal models, yet there are no human clinical data regarding the pressures required to initiate and propagate subretinal blebs. This study characterized the intraoperative pressure levels for subretinal gene therapy delivery across eight retinal conditions. A total of 116 patients with retinal degenerative diseases have been treated with subretinal gene therapy at OHSU-Casey Eye Institute as of June 2020; seventy patients (60.3%) were treated using a pneumatic-assisted subretinal delivery system. All retinal blebs were performed using a 41-gauge injection cannula, and use of a balanced salt solution (BSS) "pre-bleb" prior to gene therapy delivery was performed at the discretion of the surgeon. Patient age and intraoperative data for BSS and vector injections were analyzed in a masked fashion for all patients who received pneumatic-assisted subretinal gene therapy. The median age of the patients was 35 years (range 4-70). No significant differences in injection pressures were found across the eight retinal conditions. In this study, patient age was shown to affect maximum injection pressures required for bleb propagation, and the relationship between age and pressure varied based on retinal condition. These data have important implications in optimizing surgical protocols for subretinal injections.
Subject(s)
Retinal Degeneration , Animals , Genetic Therapy/adverse effects , Genetic Therapy/methods , Injections , RetinaABSTRACT
Signal peptide (SP) mutations are an infrequent cause of inherited retinal diseases (IRDs). We report the genes currently associated with an IRD that possess an SP sequence and assess the prevalence of these variants in a multi-institutional retrospective review of clinical genetic testing records. The online databases, RetNet and UniProt, were used to determine which IRD genes possess a SP. A multicenter retrospective review was performed to retrieve cases of patients with a confirmed diagnosis of an IRD and a concurrent SP variant. In silico evaluations were performed with MutPred, MutationTaster, and the signal peptide prediction tool, SignalP 6.0. SignalP 6.0 was further used to determine the locations of the three SP regions in each gene: the N-terminal region, hydrophobic core, and C-terminal region. Fifty-six (56) genes currently associated with an IRD possess a SP sequence. Based on the records review, a total of 505 variants were present in the 56 SP-possessing genes. Six (1.18%) of these variants were within the SP sequence and likely associated with the patients' disease based on in silico predictions and clinical correlation. These six SP variants were in the CRB1 (early-onset retinal dystrophy), NDP (familial exudative vitreoretinopathy) (FEVR), FZD4 (FEVR), EYS (retinitis pigmentosa), and RS1 (X-linked juvenile retinoschisis) genes. It is important to be aware of SP mutations as an exceedingly rare cause of IRDs. Future studies will help refine our understanding of their role in each disease process and assess therapeutic approaches.
Subject(s)
Retinal Diseases , Retinal Dystrophies , Retinitis Pigmentosa , Humans , Protein Sorting Signals/genetics , Retinal Diseases/genetics , Retinal Dystrophies/genetics , Retinal Dystrophies/diagnosis , Retina , Retinitis Pigmentosa/genetics , Genetic Testing , Mutation , Pedigree , DNA Mutational Analysis , Eye Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Frizzled Receptors/geneticsABSTRACT
Purpose: Despite the extensive use of next-generation sequencing (NGS) technology to identify disease-causing genomic variations, a major gap in our understanding of Mendelian diseases is the unidentified molecular lesion in a significant portion of patients. For inherited retinal degenerations (IRDs), although currently close to 300 disease-associated genes have been identified, the mutations in approximately one-third of patients remain unknown. With mounting evidence that noncoding mutations might contribute significantly to disease burden, we aimed to systematically investigate the contributions of noncoding regions in the genome to IRDs. Methods: In this study, we focused on RPGRIP1, which has been linked to various IRD phenotypes, including Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and macular dystrophy (MD). As several noncoding mutant alleles have been reported in RPGRIP1, and we observed that the mutation carrier frequency of RPGRIP1 is higher in patient cohorts with unsolved IRDs, we hypothesized that mutations in the noncoding regions of RPGRIP1 might be a significant contributor to pathogenicity. To test this hypothesis, we performed whole-genome sequencing (WGS) for 25 patients with unassigned IRD who carry a single mutation in RPGRIP1. Results: Three noncoding variants in RPGRIP1, including a 2,890 bp deletion and two deep-intronic variants (c.2710+233G>A and c.1468-263G>C), were identified as putative second hits of RPGRIP1 in three patients with LCA. The mutant alleles were validated with direct sequencing or in vitro assays. Conclusions: The results highlight the significance of the contribution of noncoding pathogenic variants to unsolved IRD cases.
Subject(s)
Cytoskeletal Proteins/genetics , Mutation/genetics , RNA, Untranslated/genetics , Retinal Degeneration/genetics , Adult , Alleles , Child, Preschool , Cloning, Molecular , Electroretinography , Female , Humans , Male , Phenotype , Real-Time Polymerase Chain Reaction , Retina/physiopathology , Retinal Degeneration/diagnosis , Retinal Degeneration/physiopathology , Tomography, Optical Coherence , Transfection , Visual Acuity/physiology , Whole Genome SequencingABSTRACT
PNPLA6-related disorders include several phenotypes, such as Boucher-Neuhäuser syndrome, Gordon Holmes syndrome, spastic paraplegia, photoreceptor degeneration, Oliver-McFarlane syndrome and Laurence-Moon syndrome. In this study, detailed clinical evaluations and genetic testing were performed in five (4 Chinese and 1 Caucasian/Chinese) syndromic retinal dystrophy patients. Genotype-phenotype correlations were analyzed based on review of the literatures of previously published PNPLA6-related cases. The mean age of patients and at first visit were 20.8 years (11, 12, 25, 28, 28) and 14.2 years (4, 7, 11, 24, 25), respectively. They all presented with severe chorioretinal dystrophy and profoundly decreased vision. The best corrected visual acuity (BCVA) ranged from 20/200 to 20/2000. Systemic manifestations included cerebellar ataxia, hypogonadotropic hypogonadism and hair anomalies. Six novel and three reported pathogenic variants in PNPLA6 (NM_001166111) were identified. The genotypes of the five cases are: c.3134C > T (p.Ser1045Leu) and c.3846+1G > A, c.3547C > T (p.Arg1183Trp) and c.1841+3A > G, c.3436G > A (p.Ala1146Thr) and c.2212-10A > G, c.3436G > A (p.Ala1146Thr) and c.2266C > T (p.Gln756*), c.1238_1239insC (p.Leu414Serfs*28) and c.3130A > G (p.Thr1044Ala). RT-PCR confirmed that the splicing variants indeed led to abnormal splicing. Missense variants p.Thr1044Ala, p.Ser1045Leu, p.Ala1146Thr, p.Arg1183Trp and c.3846+1G > A are located in Patatin-like phospholipase (Pat) domain. In conclusion, we report the phenotypes in five patients with PNPLA6 associated syndromic retinal dystrophy with variable systemic involvement and typical choroideremia-like fundus changes. Ocular manifestations may be the first and the only findings for years. All of our patients carried one severe deleterious variant (stop-gain or splicing variant) and one milder variant (missense variant). Retinal involvement was significantly correlated with severe deleterious variants and variants in Pat domain.
Subject(s)
Genetic Variation/genetics , Phospholipases/genetics , Retinal Dystrophies/genetics , Adult , Child , Child, Preschool , Electroretinography , Female , Genetic Association Studies , Genotyping Techniques , Humans , Male , Pedigree , Real-Time Polymerase Chain Reaction , Retinal Dystrophies/diagnostic imaging , Retinal Dystrophies/physiopathology , Tomography, Optical Coherence , Visual Acuity/physiology , Young AdultABSTRACT
Novel therapeutics for inherited retinal dystrophies (IRDs) have rapidly evolved since groundbreaking clinical trials for LCA due to RPE65 mutations led to the first FDA-approved in vivo gene therapy. Since then, advancements in viral vectors have led to more efficient AAV transduction and developed other viral vectors for gene augmentation therapy of large gene targets. Furthermore, significant developments in gene editing and RNA modulation technologies have introduced novel capabilities for treatment of autosomal dominant diseases, intronic mutations, and/or large genes otherwise unable to be treated with current viral vectors. We highlight strategies currently being evaluated in gene therapy clinical trials and promising preclinical developments for IRDs.
Subject(s)
Gene Editing , Genetic Therapy , Retinal Dystrophies/therapy , cis-trans-Isomerases/genetics , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Humans , Mutation/genetics , Retinal Dystrophies/genetics , Retinal Dystrophies/pathology , cis-trans-Isomerases/therapeutic useABSTRACT
Purpose: To evaluate the phenotypic spectrum of autosomal recessive RP1-associated retinal dystrophies and assess genotypic associations. Methods: A retrospective multicenter study was performed of patients with biallelic RP1-associated retinal dystrophies. Data including presenting symptoms and age, visual acuity, kinetic perimetry, full field electroretinogram, fundus examination, multimodal retinal imaging, and RP1 genotype were evaluated. Results: Nineteen eligible patients from 17 families were identified and ranged in age from 10 to 56 years at the most recent evaluation. Ten of the 21 unique RP1 variants identified were novel, and mutations within exon 2 accounted for nearly half of alleles across the cohort. Patients had clinical diagnoses of retinitis pigmentosa (13), cone-rod dystrophy (3), Leber congenital amaurosis (1), early-onset severe retinal dystrophy (1), and macular dystrophy (1). Macular atrophy was a common feature across the cohort. Symptom onset occurred between 4 and 30 years of age (mean 14.9 years, median 13 years), but there were clusters of onset age that correlated with the effects of RP1 mutations at a protein level. Patients with later-onset disease, including retinitis pigmentosa, had at least one missense variant in an exon 2 DCX domain. Conclusions: Biallelic RP1 mutations cause a broad spectrum of retinal disease. Exon 2 missense mutations are a significant contributor to disease and can be associated with a considerably later onset of retinitis pigmentosa than that typically associated with biallelic RP1 mutations.
Subject(s)
Microtubule-Associated Proteins/genetics , Retinal Dystrophies/genetics , Adolescent , Adult , Alleles , Child , Cohort Studies , Cone-Rod Dystrophies/genetics , DNA Mutational Analysis , Electroretinography , Eye Diseases, Hereditary/genetics , Female , Genotype , Humans , Leber Congenital Amaurosis/genetics , Macular Degeneration/genetics , Male , Middle Aged , Mutation , Mutation, Missense , Phenotype , Retinal Dystrophies/diagnostic imaging , Retinal Dystrophies/physiopathology , Retinitis Pigmentosa/genetics , Retrospective Studies , Visual AcuityABSTRACT
Inherited retinal diseases (IRDs) are a group of rare, heterogenous eye disorders caused by gene mutations that result in degeneration of the retina. There are currently limited treatment options for IRDs; however, retinal gene therapy holds great promise for the treatment of different forms of inherited blindness. One such IRD for which gene therapy has shown positive initial results is choroideremia, a rare, X-linked degenerative disorder of the retina and choroid. Mutation of the CHM gene leads to an absence of functional Rab escort protein 1 (REP1), which causes retinal pigment epithelium cell death and photoreceptor degeneration. The condition presents in childhood as night blindness, followed by progressive constriction of visual fields, generally leading to vision loss in early adulthood and total blindness thereafter. A recently developed adeno-associated virus-2 (AAV2) vector construct encoding REP1 (AAV2-REP1) has been shown to deliver a functional version of the CHM gene into the retinal pigment epithelium and photoreceptor cells. Phase 1 and 2 studies of AAV2-REP1 in patients with choroideremia have produced encouraging results, suggesting that it is possible not only to slow or stop the decline in vision following treatment with AAV2-REP1, but also to improve visual acuity in some patients.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Choroideremia/therapy , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Parvovirinae/genetics , Choroideremia/genetics , Choroideremia/pathology , Dependovirus , Humans , Mutation , Retina/pathology , Retinal Pigment Epithelium/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/therapy , Treatment Outcome , Visual Acuity/geneticsABSTRACT
PURPOSE: Choroideremia is an incurable, X-linked, recessive retinal dystrophy caused by loss of function mutations in the CHM gene. It is estimated to affect approximately 1 in 50,000 male patients. It is characterized by progressive degeneration of the retinal pigment epithelium, choroid, and photoreceptors, resulting in visual impairment and blindness. There is an unmet need in choroideremia, because currently, there are no approved treatments available for patients with the disease. METHODS: We review the patient journey, societal impact, and emerging treatments for patients with choroideremia. RESULTS: Its relative rarity and similarities with other retinal diseases in early years mean that diagnosis of choroideremia can often be delayed. Furthermore, its impact on affected individuals, and wider society, is also likely underestimated. AAV2-mediated gene therapy is an investigational treatment that aims to replace the faulty CHM gene. Early-phase studies reported potentially important visual acuity gains and maintenance of vision in some patients, and a large Phase 3 program is now underway. CONCLUSION: Choroideremia is a disease with a significant unmet need. Interventions that can treat progression of the disease and improve visual and functional outcomes have the potential to reduce health care costs and enhance patient quality of life.
Subject(s)
Choroid/pathology , Choroideremia/diagnosis , Retinal Degeneration/etiology , Retinal Pigment Epithelium/pathology , Visual Acuity , Choroideremia/complications , Disease Progression , Humans , Retinal Degeneration/diagnosisABSTRACT
BACKGROUND: Alström syndrome (AS) is a rare monogenic disorder characterized by progressive multi-organ pathology including retinal degeneration, hearing impairment and type 2 diabetes. Here we present clinical features in two siblings diagnosed with Alström syndrome associated with two novel changes in ALMS1. CASE PRESENTATION: Two siblings originally diagnosed as having achromatopsia presented with mild light sensitivity, nonspecific otitis media, and mild developmental delay during the first decade of life with a relatively stable ocular appearance during second decade, late onset of nystagmus and dyschromatopsia (after 20 years) and preserved vision during the third decade of life. One sibling had late onset hearing loss and both siblings had symmetric high myopia, normal stature, and ptosis. Clinical findings revealed structural and functional tests consistent with a cone-rod dystrophy. Novel variants c.9894dupC (p.S3298 fs) and c.10769delC (p.T3590 fs) in ALMS1 gene were found. CONCLUSIONS: Two North American siblings who presented with a mild clinical phenotype of Alström syndrome were found to have novel mutations in ALMS1. These two frame-shift mutations segregated with the disease phenotype lending evidence to their pathogenicity.
Subject(s)
Alstrom Syndrome/genetics , Cell Cycle Proteins/genetics , Mutation , Retinal Degeneration/etiology , Adult , Humans , Male , Siblings , Young AdultABSTRACT
PURPOSE: We report a novel finding on spectral domain optical coherence tomography in patients with choroideremia, which we describe as scleral pits (SCPs). METHODS: Cross-sectional observational case series of 36 patients with choroideremia, who underwent ophthalmic examination and multimodal imaging, including optical coherence tomography of the macula. Optical coherence tomography images were reviewed for SCP, which were defined as discrete tracts of hyporeflectivity that traverse the sclera with or without the involvement of Bruch membrane, retinal pigment epithelium, and retina. Unpaired two-tailed t-test with Welch correction was used for statistical analysis. RESULTS: Of the 36 patients, 19 had SCP in at least one eye. Scleral pits were confined to areas of advanced chorioretinal degeneration and never involved the foveola. Type 1 SCP affected only the sclera, whereas Type 2 SCP also involved the Bruch membrane and the retinal pigment epithelium. Type 3 SCP additionally had a full-thickness retinal defect. Patients with SCP were significantly older (51 ± 2 vs. 33 ± 4 years; P < 0.05) and had lower best-corrected visual acuity (20/160 vs. 20/30 or 0.9 ± 0.2 vs. 0.2 ± 0.07 logarithm of the minimum angle of resolution; P < 0.05) than patients without SCP. Patients with SCP had a greater myopic refractive error compared with patients without SCP (-2.6 ± 0.5 vs. -0.3 ± 0.5D; P < 0.05), but there was no significant correlation between the number of SCPs with refraction. Short posterior ciliary arteries were observed to enter the eye through one Type 3 SCP. CONCLUSION: Scleral pits are, to the best of our knowledge, a novel optical coherence tomography finding in advanced choroideremia that likely represents the abnormal juxtaposition of penetrating short posterior ciliary arteries with the retina.
Subject(s)
Abnormalities, Multiple/therapy , Choroid/blood supply , Choroideremia/therapy , Cleft Lip/therapy , Cleft Palate/therapy , Cysts/therapy , Genetic Therapy/methods , Lip/abnormalities , Retinal Pigment Epithelium/pathology , Sclera/abnormalities , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/physiopathology , Adult , Aged , Bruch Membrane/pathology , Choroideremia/diagnosis , Choroideremia/physiopathology , Cleft Lip/diagnosis , Cleft Lip/physiopathology , Cleft Palate/diagnosis , Cleft Palate/physiopathology , Cross-Sectional Studies , Cysts/diagnosis , Cysts/physiopathology , Female , Fluorescein Angiography/methods , Follow-Up Studies , Humans , Lip/physiopathology , Male , Middle Aged , Tomography, Optical Coherence/methods , Visual AcuityABSTRACT
Retinal vascular diseases are important causes of vision loss. A detailed evaluation of the vascular abnormalities facilitates diagnosis and treatment in these diseases. Optical coherence tomography (OCT) angiography using the highly efficient split-spectrum amplitude decorrelation angiography algorithm offers an alternative to conventional dye-based retinal angiography. OCT angiography has several advantages, including 3D visualization of retinal and choroidal circulations (including the choriocapillaris) and avoidance of dye injection-related complications. Results from six illustrative cases are reported. In diabetic retinopathy, OCT angiography can detect neovascularization and quantify ischemia. In age-related macular degeneration, choroidal neovascularization can be observed without the obscuration of details caused by dye leakage in conventional angiography. Choriocapillaris dysfunction can be detected in the nonneovascular form of the disease, furthering our understanding of pathogenesis. In choroideremia, OCT's ability to show choroidal and retinal vascular dysfunction separately may be valuable in predicting progression and assessing treatment response. OCT angiography shows promise as a noninvasive alternative to dye-based angiography for highly detailed, in vivo, 3D, quantitative evaluation of retinal vascular abnormalities.