Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
PLoS Comput Biol ; 17(10): e1009326, 2021 10.
Article in English | MEDLINE | ID: mdl-34648495

ABSTRACT

Assessing the impact of mobility on epidemic spreading is of crucial importance for understanding the effect of policies like mass quarantines and selective re-openings. While many factors affect disease incidence at a local level, making it more or less homogeneous with respect to other areas, the importance of multi-seeding has often been overlooked. Multi-seeding occurs when several independent (non-clustered) infected individuals arrive at a susceptible population. This can lead to independent outbreaks that spark from distinct areas of the local contact (social) network. Such mechanism has the potential to boost incidence, making control efforts and contact tracing less effective. Here, through a modeling approach we show that the effect produced by the number of initial infections is non-linear on the incidence peak and peak time. When case importations are carried by mobility from an already infected area, this effect is further enhanced by the local demography and underlying mixing patterns: the impact of every seed is larger in smaller populations. Finally, both in the model simulations and the analysis, we show that a multi-seeding effect combined with mobility restrictions can explain the observed spatial heterogeneities in the first wave of COVID-19 incidence and mortality in five European countries. Our results allow us for identifying what we have called epidemic epicenter: an area that shapes incidence and mortality peaks in the entire country. The present work further clarifies the nonlinear effects that mobility can have on the evolution of an epidemic and highlight their relevance for epidemic control.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control , Computer Simulation , COVID-19/prevention & control , COVID-19/transmission , Disease Outbreaks , Europe/epidemiology , Humans , Incidence , Travel
2.
J R Soc Interface ; 18(181): 20210092, 2021 08.
Article in English | MEDLINE | ID: mdl-34343450

ABSTRACT

After more than 1 year into the COVID-19 pandemic, governments worldwide still face the challenge of adopting non-pharmaceutical interventions to mitigate the risks posed by the emergence of new SARS-CoV-2 variants and the lack of a worldwide equitable vaccine allocation. Thus, it becomes crucial to identify the drivers of mobility responses to mitigation efforts during different restriction regimes, for planning interventions that are both economically and socially sustainable while effective in controlling an outbreak. Here, using anonymous and privacy-enhanced cell phone data from Italy, we investigate the determinants of spatial variations of reductions in mobility and co-location in response to the adoption and the lift of restrictions, considering both provinces and city neighbourhoods. In large urban areas, our analysis uncovers the desertification of historic city centres, which persisted after the end of the lockdown. Such centre-periphery gradient was mainly associated with differences in educational attainment. At the province level, the local structure of the labour market mainly explained the variations in mobility responses, together with other demographic factors, such as the population's age and sex composition. In the future, targeted interventions should take into account how the ability to comply with restrictions varies across geographical areas and socio-demographic groups.


Subject(s)
COVID-19 , Cities , Communicable Disease Control , Humans , Italy , Pandemics , SARS-CoV-2 , Socioeconomic Factors
3.
Sci Data ; 7(1): 230, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641758

ABSTRACT

Italy has been severely affected by the COVID-19 pandemic, reporting the highest death toll in Europe as of April 2020. Following the identification of the first infections, on February 21, 2020, national authorities have put in place an increasing number of restrictions aimed at containing the outbreak and delaying the epidemic peak. On March 12, the government imposed a national lockdown. To aid the evaluation of the impact of interventions, we present daily time-series of three different aggregated mobility metrics: the origin-destination movements between Italian provinces, the radius of gyration, and the average degree of a spatial proximity network. All metrics were computed by processing a large-scale dataset of anonymously shared positions of about 170,000 de-identified smartphone users before and during the outbreak, at the sub-national scale. This dataset can help to monitor the impact of the lockdown on the epidemic trajectory and inform future public health decision making.


Subject(s)
Communicable Disease Control/methods , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Travel/statistics & numerical data , Betacoronavirus , COVID-19 , Geographic Information Systems , Humans , Italy/epidemiology , Pandemics , SARS-CoV-2 , Smartphone , Social Isolation
SELECTION OF CITATIONS
SEARCH DETAIL