Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Publication year range
1.
Sensors (Basel) ; 23(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836967

ABSTRACT

Albeit its simplicity, the concentric spheres head model is widely used in EEG. The reason behind this is its simple mathematical definition, which allows for the calculation of lead fields with negligible computational cost, for example, for iterative approaches. Nevertheless, the literature shows contradictory formulations for the electrical solution of this head model. In this work, we study several different definitions for the electrical lead field of a four concentric spheres conduction model, finding that their results are contradictory. A thorough exploration of the mathematics used to build these formulations, provided in the original works, allowed for the identification of errors in some of the formulae, which proved to be the reason for the discrepancies. Moreover, this mathematical review revealed the iterative nature of some of these formulations, which allowed us to develop a formulation to solve the lead field in a head model built from an arbitrary number of concentric, homogeneous, and isotropic spheres.


Subject(s)
Electroencephalography , Models, Neurological , Electroencephalography/methods , Mathematics , Electricity , Brain , Head , Brain Mapping/methods
2.
Sensors (Basel) ; 23(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37177443

ABSTRACT

Biometric identification uses person recognition techniques based on the extraction of some of their physical or biological properties, which make it possible to characterize and differentiate one person from another and provide irreplaceable and critical information that is suitable for application in security systems. The extraction of information from the electrical biosignal of the human brain has received a great deal of attention in recent years. Analysis of EEG signals has been widely used over the last century in medicine and as a basis for brain-machine interfaces (BMIs). In addition, the application of EEG signals for biometric recognition has recently been demonstrated. In this context, EEG-based biometric systems are often considered in two different applications: identification (one-to-many classification) and authentication (one-to-one or true/false classification). In this article, we establish a methodology for selecting and reducing the minimum number of EEG sensors necessary to carry out effective biometric identification of individuals. Two methodologies were applied, one based on principal component analysis and the other on the Wilcoxon signed-rank test in order to reduce the number of electrodes. This allowed us to identify, according to the methodology used, the areas of the cerebral cortex that would allow selection of the minimum number of electrodes necessary for the identification of individuals. The methodologies were applied to two databases, one with 13 people with self-collected recordings using low-cost EEG equipment, EMOTIV EPOC+, and another publicly available database with recordings from 109 people provided by the PhysioNet BCI.


Subject(s)
Biometric Identification , Brain-Computer Interfaces , Humans , Electroencephalography/methods , Brain , Electrodes , Biometry
3.
Eur J Neurosci ; 53(10): 3378-3393, 2021 05.
Article in English | MEDLINE | ID: mdl-33786931

ABSTRACT

Many neuroimaging studies have shown that the hippocampus participates in a resting-state network called the default mode network. However, how the hippocampus connects to the default mode network, whether the hippocampus connects to other resting-state networks and how the different hippocampal subfields take part in resting-state networks remains poorly understood. Here, we examined these issues using the high spatial-resolution 7T resting-state fMRI dataset from the Human Connectome Project. We used data-driven techniques that relied on spatially-restricted Independent Component Analysis, Dual Regression and linear mixed-effect group-analyses based on participant-specific brain morphology. The results revealed two main activity hotspots inside the hippocampus. The first hotspot was located in an anterior location and was correlated with the somatomotor network. This network was subserved by co-activity in the CA1, CA3, CA4 and Dentate Gyrus fields. In addition, there was an activity hotspot that extended from middle to posterior locations along the hippocampal long-axis and correlated with the default mode network. This network reflected activity in the Subiculum, CA4 and Dentate Gyrus fields. These results show how different sections of the hippocampus participate in two known resting-state networks and how these two resting-state networks depend on different configurations of hippocampal subfield co-activity.


Subject(s)
Hippocampus , Magnetic Resonance Imaging , Hippocampus/diagnostic imaging , Humans , Neuroimaging
4.
J Neurosci Res ; 98(10): 1857-1876, 2020 10.
Article in English | MEDLINE | ID: mdl-32585750

ABSTRACT

There is supporting evidence of alcohol negative effects on the brain: neuroimaging and psychophysiological studies finding anatomical and functional connectivity (FC) changes associated with the dependence process. Thus, the aim of this work was to evaluate brain FC and network characteristics of alcohol-dependent individuals in resting state. For this study, we included males diagnosed with alcohol dependence (N = 25) and a group of healthy individuals (N = 23). Simultaneous EEG-MEG (electroencephalographic and magnetoencephalographic) activity was recorded in 5 min of eyes-closed resting state. EEG-MEG activity was preprocessed and FC was computed through the leakage-corrected version of phase locking value (ciPLV). Additionally, local (degree, efficiency, clustering) and global (efficiency, characteristic path length) network parameters were computed. Connectivity analysis showed an increase in phase-lagged synchronization, mainly between frontal and frontotemporal regions, in high beta band, and a decrease in interhemispheric gamma, for alcohol-dependent individuals. Network analysis revealed intergroup differences at the local level for high beta, indicating higher degree, clustering, and efficiency, mostly at frontal nodes, together with a decrease in these measures at more posterior sites for patients' group. The hyper-synchronization in beta, next to the hypo-synchronization in gamma, could indicate an alteration in communication between hemispheres, but also a possible functional compensation mechanism in neural circuits. This could be also supported by network characteristic data, where local alterations in communication are observed.


Subject(s)
Alcoholism/diagnosis , Alcoholism/physiopathology , Electroencephalography/methods , Frontal Lobe/physiopathology , Magnetoencephalography/methods , Nerve Net/physiopathology , Adult , Alcoholism/therapy , Female , Humans , Male , Middle Aged , Rest/physiology
5.
Brain ; 142(12): 3936-3950, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31633176

ABSTRACT

Hypersynchronization has been proposed as a synaptic dysfunction biomarker in the Alzheimer's disease continuum, reflecting the alteration of the excitation/inhibition balance. While animal models have verified this idea extensively, there is still no clear evidence in humans. Here we test this hypothesis, evaluating the risk of conversion from mild cognitive impairment (MCI) to Alzheimer's disease in a longitudinal study. We compared the functional resting state eyes-closed magnetoencephalographic networks of 54 patients with MCI who were followed-up every 6 months. According to their clinical outcome, they were split into: (i) the 'progressive' MCI (n = 27) group; and (ii) the 'stable' MCI group (n = 27). They did not differ in gender or educational level. For all participants, two magnetoencephalographic recordings were acquired. Functional connectivity was evaluated using the phase locking value. To extract the functional connectivity network with significant changes between both magnetoencephalographic recordings, we evaluated the functional connectivity ratio, defined as functional connectivity post-/pre-condition, in a network-based statistical model with an ANCOVA test with age as covariate. Two significant networks were found in the theta and beta bands, involving fronto-temporal and fronto-occipital connections, and showing a diminished functional connectivity ratio in the progressive MCI group. These topologies were then evaluated at each condition showing that at baseline, patients with progressive MCI showed higher synchronization than patients with stable MCI, while in the post-condition this pattern was reversed. These results may be influenced by two main factors in the post-condition: the increased synchrony in the stable MCI patients and the network failure in the progressive MCI patients. These findings may be explained as an 'X' form model where the hypersynchrony predicts conversion, leading subsequently to a network breakdown in progressive MCI. Patients with stable MCI showed an opposite phenomenon, which could indicate that they were a step beyond in the Alzheimer's disease continuum. This model would be able to predict the risk for the conversion to dementia in MCI patients.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Nerve Net/diagnostic imaging , Aged , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Male , Neuroimaging , Neuropsychological Tests
6.
Neuroimage ; 186: 70-82, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30394328

ABSTRACT

Cognitive flexibility is critical for humans living in complex societies with ever-growing multitasking demands. Yet the low-frequency neural dynamics of distinct task-specific and domain-general mechanisms sub-serving mental flexibility are still ill-defined. Here we estimated phase electroencephalogram synchronization by using inter-trial phase coherence (ITPC) at the source space while twenty six young participants were intermittently cued to switch or repeat their perceptual categorization rule of Gabor gratings varying in color and thickness (switch task). Therefore, the aim of this study was to examine whether a proactive control is associated with connectivity only in the frontoparietal theta network, or also involves distinct neural connectivity within the delta band, as distinct neural signatures while preparing to switch or repeat a task set, respectively. To this end, we focused the analysis on late-latencies (from 500 to 800 msec post-cue onset), since they are known to be associated with top-down cognitive control processes. We confirmed that proactive control during a task switch was associated with frontoparietal theta connectivity. But importantly, we also found a distinct role of delta band oscillatory synchronization in proactive control, engaging more posterior frontotemporal regions as opposed to frontoparietal theta connectivity. Additionally, we built a regression model by using the ITPC results in delta and theta bands as predictors, and the behavioral accuracy in the switch task as the criterion, obtaining significant results for both frequency bands. All these findings support the existence of distinct proactive cognitive control processes related to functionally distinct though highly complementary theta and delta frontoparietal and temporoparietal oscillatory networks at late-latency temporal scales.


Subject(s)
Cerebral Cortex/physiology , Delta Rhythm/physiology , Electroencephalography Phase Synchronization/physiology , Executive Function/physiology , Nerve Net/physiology , Psychomotor Performance/physiology , Theta Rhythm/physiology , Adult , Female , Humans , Male , Pattern Recognition, Visual/physiology , Young Adult
7.
Sensors (Basel) ; 19(11)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159311

ABSTRACT

Parkinson's Disease (PD) is currently the second most common neurodegenerative disease. One of the most characteristic symptoms of PD is resting tremor. Local Field Potentials (LFPs) have been widely studied to investigate deviations from the typical patterns of healthy brain activity. However, the inherent dynamics of the Sub-Thalamic Nucleus (STN) LFPs and their spatiotemporal dynamics have not been well characterized. In this work, we study the non-linear dynamical behaviour of STN-LFPs of Parkinsonian patients using ε -recurrence networks. RNs are a non-linear analysis tool that encodes the geometric information of the underlying system, which can be characterised (for example, using graph theoretical measures) to extract information on the geometric properties of the attractor. Results show that the activity of the STN becomes more non-linear during the tremor episodes and that ε -recurrence network analysis is a suitable method to distinguish the transitions between movement conditions, anticipating the onset of the tremor, with the potential for application in a demand-driven deep brain stimulation system.


Subject(s)
Deep Brain Stimulation/methods , Support Vector Machine , Tremor/metabolism , Female , Humans , Male , Models, Theoretical , Nonlinear Dynamics , Parkinson Disease/metabolism
8.
Chaos ; 27(4): 047401, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28456171

ABSTRACT

Inferring effective connectivity from neurophysiological data is a challenging task. In particular, only a finite (and usually small) number of sites are simultaneously recorded, while the response of one of these sites can be influenced by other sites that are not being recorded. In the hippocampal formation, for instance, the connections between areas CA1-CA3, the dentate gyrus (DG), and the entorhinal cortex (EC) are well established. However, little is known about the relations within the EC layers, which might strongly affect the resulting effective connectivity estimations. In this work, we build excitatory/inhibitory neuronal populations representing the four areas CA1, CA3, the DG, and the EC and fix their connectivities. We model the EC by three layers (LII, LIII, and LV) and assume any possible connection between them. Our results, based on Granger Causality (GC) and Partial Transfer Entropy (PTE) measurements, reveal that the estimation of effective connectivity in the hippocampus strongly depends on the connectivities between EC layers. Moreover, we find, for certain EC configurations, very different results when comparing GC and PTE measurements. We further demonstrate that causal links can be robustly inferred regardless of the excitatory or inhibitory nature of the connection, adding complexity to their interpretation. Overall, our work highlights the importance of a careful analysis of the connectivity methods to prevent unrealistic conclusions when only partial information about the experimental system is available, as usually happens in brain networks. Our results suggest that the combination of causality measures with neuronal modeling based on precise neuroanatomical tracing may provide a powerful framework to disambiguate causal interactions in the brain.


Subject(s)
Entorhinal Cortex/physiology , Hippocampus/physiology , Nerve Net/physiology , Animals , Interneurons/physiology , Models, Neurological , Rats , Time Factors
9.
Sensors (Basel) ; 17(12)2017 Dec 16.
Article in English | MEDLINE | ID: mdl-29258189

ABSTRACT

BACKGROUND: Modern Elekta Neuromag MEG devices include 102 sensor triplets containing one magnetometer and two planar gradiometers. The first processing step is often a signal space separation (SSS), which provides a powerful noise reduction. A question commonly raised by researchers and reviewers relates to which data should be employed in analyses: (1) magnetometers only, (2) gradiometers only, (3) magnetometers and gradiometers together. The MEG community is currently divided with regard to the proper answer. METHODS: First, we provide theoretical evidence that both gradiometers and magnetometers result from the backprojection of the same SSS components. Then, we compare resting state and task-related sensor and source estimations from magnetometers and gradiometers in real MEG recordings before and after SSS. RESULTS: SSS introduced a strong increase in the similarity between source time series derived from magnetometers and gradiometers (r² = 0.3-0.8 before SSS and r² > 0.80 after SSS). After SSS, resting state power spectrum and functional connectivity, as well as visual evoked responses, derived from both magnetometers and gradiometers were highly similar (Intraclass Correlation Coefficient > 0.8, r² > 0.8). CONCLUSIONS: After SSS, magnetometer and gradiometer data are estimated from a single set of SSS components (usually ≤ 80). Equivalent results can be obtained with both sensor types in typical MEG experiments.

10.
Hum Brain Mapp ; 37(1): 20-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26503502

ABSTRACT

Structural and functional connectivity (SC and FC) have received much attention over the last decade, as they offer unique insight into the coordination of brain functioning. They are often assessed independently with three imaging modalities: SC using diffusion-weighted imaging (DWI), FC using functional magnetic resonance imaging (fMRI), and magnetoencephalography/electroencephalography (MEG/EEG). DWI provides information about white matter organization, allowing the reconstruction of fiber bundles. fMRI uses blood-oxygenation level-dependent (BOLD) contrast to indirectly map neuronal activation. MEG and EEG are direct measures of neuronal activity, as they are sensitive to the synchronous inputs in pyramidal neurons. Seminal studies have targeted either the electrophysiological substrate of BOLD or the anatomical basis of FC. However, multimodal comparisons have been scarcely performed, and the relation between SC, fMRI-FC, and MEG-FC is still unclear. Here we present a systematic comparison of SC, resting state fMRI-FC, and MEG-FC between cortical regions, by evaluating their similarities at three different scales: global network, node, and hub distribution. We obtained strong similarities between the three modalities, especially for the following pairwise combinations: SC and fMRI-FC; SC and MEG-FC at theta, alpha, beta and gamma bands; and fMRI-FC and MEG-FC in alpha and beta. Furthermore, highest node similarity was found for regions of the default mode network and primary motor cortex, which also presented the highest hubness score. Distance was partially responsible for these similarities since it biased all three connectivity estimates, but not the unique contributor, since similarities remained after controlling for distance.


Subject(s)
Brain/blood supply , Brain/physiology , Multimodal Imaging , Neural Pathways/blood supply , Neural Pathways/physiology , Rest/physiology , Adult , Brain Mapping , Diffusion Tensor Imaging , Electroencephalography , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Magnetoencephalography , Male , Models, Neurological , Young Adult
11.
Cortex ; 149: 85-100, 2022 04.
Article in English | MEDLINE | ID: mdl-35189396

ABSTRACT

Autonomous sensory meridian response (ASMR) describes an atypical multisensory experience of calming, tingling sensations in response to a specific subset of social audiovisual triggers. To date, the electrophysiological (EEG) correlates of ASMR remain largely unexplored. Here we sought to provide source-level signatures of oscillatory changes induced by this phenomenon and investigate potential decay effects-oscillatory changes in the absence of self-reported ASMR. We recorded brain activity using EEG as participants watched ASMR-inducing videos and self-reported changes in their state: no change (Baseline); enhanced relaxation (Relaxed); and ASMR sensations (ASMR). Statistical tests in the sensor-space were used to inform contrasts in the source-space, executed with beamformer reconstruction. ASMR modulated oscillatory power by decreasing high gamma (52-80 Hz) relative to Relaxed and by increasing alpha (8-13 Hz) and decreasing delta (1-4 Hz) relative to Baseline. At the source level, ASMR increased power in the low-mid frequency ranges (8-18 Hz) and decreased power in high frequency (21-80 Hz). ASMR decay effects reduced gamma (30-80 Hz) and in the source-space reduced high-beta/gamma power (21-80 Hz). The temporal profile of ASMR modulations in high-frequency power later shifts to lower frequencies (1-8 Hz), except for an enhanced alpha, which persists for up to 45 min post self-reported ASMR. Crucially, these results provide the first evidence that the cortical sources of ASMR tingling sensations may arise from decreases in higher frequency oscillations and that ASMR may induce a sustained relaxation state.


Subject(s)
Emotions , Meridians , Anxiety , Electroencephalography , Humans
12.
Brain Sci ; 11(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530384

ABSTRACT

The present work aims to demonstrate the hypothesis that atonal music modifies the topological structure of electroencephalographic (EEG) connectivity networks in relation to tonal music. To this, EEG monopolar records were taken in musicians and non-musicians while listening to tonal, atonal, and pink noise sound excerpts. EEG functional connectivities (FC) among channels assessed by a phase synchronization index previously thresholded using surrogate data test were computed. Sound effects, on the topological structure of graph-based networks assembled with the EEG-FCs at different frequency-bands, were analyzed throughout graph metric and network-based statistic (NBS). Local and global efficiency normalized (vs. random-network) measurements (NLE|NGE) assessing network information exchanges were able to discriminate both music styles irrespective of groups and frequency-bands. During tonal audition, NLE and NGE values in the beta-band network get close to that of a small-world network, while during atonal and even more during noise its structure moved away from small-world. These effects were attributed to the different timbre characteristics (sounds spectral centroid and entropy) and different musical structure. Results from networks topographic maps for strength and NLE of the nodes, and for FC subnets obtained from the NBS, allowed discriminating the musical styles and verifying the different strength, NLE, and FC of musicians compared to non-musicians.

13.
Sci Rep ; 11(1): 12160, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108523

ABSTRACT

Neural modelling tools are increasingly employed to describe, explain, and predict the human brain's behavior. Among them, spiking neural networks (SNNs) make possible the simulation of neural activity at the level of single neurons, but their use is often threatened by the resources needed in terms of processing capabilities and memory. Emerging applications where a low energy burden is required (e.g. implanted neuroprostheses) motivate the exploration of new strategies able to capture the relevant principles of neuronal dynamics in reduced and efficient models. The recent Leaky Integrate-and-Fire with Latency (LIFL) spiking neuron model shows some realistic neuronal features and efficiency at the same time, a combination of characteristics that may result appealing for SNN-based brain modelling. In this paper we introduce FNS, the first LIFL-based SNN framework, which combines spiking/synaptic modelling with the event-driven approach, allowing us to define heterogeneous neuron groups and multi-scale connectivity, with delayed connections and plastic synapses. FNS allows multi-thread, precise simulations, integrating a novel parallelization strategy and a mechanism of periodic dumping. We evaluate the performance of FNS in terms of simulation time and used memory, and compare it with those obtained with neuronal models having a similar neurocomputational profile, implemented in NEST, showing that FNS performs better in both scenarios. FNS can be advantageously used to explore the interaction within and between populations of spiking neurons, even for long time-scales and with a limited hardware configuration.

14.
Front Neurosci ; 15: 582608, 2021.
Article in English | MEDLINE | ID: mdl-33679293

ABSTRACT

The recent "multi-neuronal spike sequence detector" (MNSD) architecture integrates the weight- and delay-adjustment methods by combining heterosynaptic plasticity with the neurocomputational feature spike latency, representing a new opportunity to understand the mechanisms underlying biological learning. Unfortunately, the range of problems to which this topology can be applied is limited because of the low cardinality of the parallel spike trains that it can process, and the lack of a visualization mechanism to understand its internal operation. We present here the nMNSD structure, which is a generalization of the MNSD to any number of inputs. The mathematical framework of the structure is introduced, together with the "trapezoid method," that is a reduced method to analyze the recognition mechanism operated by the nMNSD in response to a specific input parallel spike train. We apply the nMNSD to a classification problem previously faced with the classical MNSD from the same authors, showing the new possibilities the nMNSD opens, with associated improvement in classification performances. Finally, we benchmark the nMNSD on the classification of static inputs (MNIST database) obtaining state-of-the-art accuracies together with advantageous aspects in terms of time- and energy-efficiency if compared to similar classification methods.

15.
Brain Connect ; 11(9): 725-733, 2021 11.
Article in English | MEDLINE | ID: mdl-33858203

ABSTRACT

Introduction: The majority of individuals with Down syndrome (DS) show signs of Alzheimer's disease (AD) neuropathology in their fourth decade. However, there is a lack of specific markers for characterizing the disease stages while considering this population's differential features. Methods: Forty-one DS individuals participated in the study, and were classified into three groups according to their clinical status: Alzheimer's disease (AD-DS), mild cognitive impairment (MCI-DS), and controls (CN-DS). We performed an exhaustive neuropsychological evaluation and assessed brain functional connectivity (FC) from magnetoencephalographic recordings. Results: Compared with CN-DS, both MCI-DS and AD-DS showed a pattern of increased FC within the high alpha band. The neuropsychological assessment showed a generalized cognitive impairment, especially affecting mnestic functions, in MCI-DS and, more pronouncedly, in AD-DS. Discussion: These findings might help to characterize the AD-continuum in DS. In addition, they support the role of the excitatory/inhibitory imbalance as a key pathophysiological factor in AD. Impact statement The pattern of functional connectivity (FC) hypersynchronization found in this study resembles the largely reported Alzheimer's disease (AD) FC evolution pattern in population with typical development. This study supports the hypothesis of the excitatory/inhibitory imbalance as a key pathophysiological factor in AD, and its conclusions could help in the characterization and prediction of Down syndrome individuals with a greater likelihood of converting to dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Alzheimer Disease/complications , Brain/diagnostic imaging , Cognitive Dysfunction/etiology , Humans , Magnetoencephalography
16.
Cereb Cortex Commun ; 2(4): tgab051, 2021.
Article in English | MEDLINE | ID: mdl-34647029

ABSTRACT

The concept of the brain has shifted to a complex system where different subnetworks support the human cognitive functions. Neurodegenerative diseases would affect the interactions among these subnetworks and, the evolution of impairment and the subnetworks involved would be unique for each neurodegenerative disease. In this study, we seek for structural connectivity traits associated with the family history of Alzheimer's disease, that is, early signs of subnetworks impairment due to Alzheimer's disease. The sample in this study consisted of 123 first-degree Alzheimer's disease relatives and 61 nonrelatives. For each subject, structural connectomes were obtained using classical diffusion tensor imaging measures and different resolutions of cortical parcellation. For the whole sample, independent structural-connectome-traits were obtained under the framework of connICA. Finally, we tested the association of the structural-connectome-traits with different factors of relevance for Alzheimer's disease by means of a multiple linear regression. The analysis revealed a structural-connectome-trait obtained from fractional anisotropy associated with the family history of Alzheimer's disease. The structural-connectome-trait presents a reduced fractional anisotropy pattern in first-degree relatives in the tracts connecting posterior areas and temporal areas. The family history of Alzheimer's disease structural-connectome-trait presents a posterior-posterior and posterior-temporal pattern, supplying new evidences to the cascading network failure model.

17.
J Comput Neurosci ; 29(1-2): 13-22, 2010 Aug.
Article in English | MEDLINE | ID: mdl-19418211

ABSTRACT

Irregular and complex signals are ubiquitous in nature. The principal aim of this paper is to develop an index, quantifying the complexity of such signals, which is based on the distribution of the strengths of its orthogonal oscillatory modes estimated by singular value decomposition. The index is first tested with simulated chaotic and/or stochastic maps and flows. Among neural data analysis, the index is first applied to a cognitive EEG data set recorded from two groups, musicians and non-musicians, during listening to music and resting state. In the gamma band (30-50 Hz), musicians showed robust changes in complexity, consistent over various scalp regions, during listening to music from resting condition, whereas such changes were minimal for non-musicians. Then the index is used to separate healthy participants from epileptic and manic patients based on spontaneous EEG analysis. Finally, it is used to track a tonic-clonic seizure EEG signal, and a conspicuous change was found in the complexity profiles of delta band (1-3.5 Hz) oscillations at the onset of seizure. We conclude that this index would be useful for quantification of a wide range of time series including neural oscillations.


Subject(s)
Biological Clocks/physiology , Computer Simulation , Models, Statistical , Signal Processing, Computer-Assisted , Auditory Perception/physiology , Electroencephalography/methods , Epilepsy/physiopathology , Humans , Music , Nervous System Diseases/physiopathology , Time Factors
18.
Elife ; 92020 07 20.
Article in English | MEDLINE | ID: mdl-32687054

ABSTRACT

Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.


In the brain, a vast number of neurons coordinate their activity to support complex cognitive processes. One of the best places to see this in action is the hippocampus, a brain structure with a key role in memory and navigation. The hippocampus shows waves of electrical activity, which represent the synchronized firing of large numbers of neurons. The hippocampus can generate multiple rhythms at once. The two main rhythms are theta and gamma. Theta waves are slow, with a frequency of about 8 Hertz. Gamma waves are faster with a frequency of up to 120 Hertz or even more. Theta waves are always present in the brains of freely moving animals, whereas gamma waves occur in brief bursts. These bursts usually correspond to a particular point on the theta wave. One burst may occur just before each peak of the theta wave, for example, whereas another burst may occur just after the peak. This separation enables individual bursts of gamma to carry different messages without them becoming mixed up. This is similar to how radio stations broadcast their signals at different carrier frequencies to avoid interference. By recording hippocampal activity in rats exploring a maze, Lopez-Madrona et al. now show that the hippocampus has not one, but three generators of theta waves. Having three sources of theta, each of which can be synchronized with gamma, provides a more versatile system for encoding and sending information. It also means that the three theta generators can vary the degree to which they coordinate their firing. This helps the brain combine or separate streams of information as required. By working together to create a single theta rhythm, for example, the three theta generators can help animals combine information stored in memory with incoming sensory input. How the coordination of theta rhythms in the hippocampus influences the activity of other brain regions involved in learning and memory remains unclear. However, uncoupling of theta and gamma waves seems to be an early sign of Alzheimer's disease and can also be seen in the brains of people with schizophrenia and other psychiatric disorders. Understanding how this process occurs could provide clues to the origin of these disorders.


Subject(s)
Exploratory Behavior/physiology , Hippocampus/physiology , Memory/physiology , Theta Rhythm/physiology , Animals , Male , Rats , Rats, Long-Evans
19.
Front Neurosci ; 13: 542, 2019.
Article in English | MEDLINE | ID: mdl-31244592

ABSTRACT

The need for designing and validating novel biomarkers for the detection of mild cognitive impairment (MCI) is evident. MCI patients have a high risk of developing Alzheimer's disease (AD), and for that reason the introduction of novel and reliable biomarkers is of significant clinical importance. Motivated by recent findings on the rich information of dynamic functional connectivity graphs (DFCGs) about brain (dys) function, we introduced a novel approach of identifying MCI based on magnetoencephalographic (MEG) resting state recordings. The activity of different brain rhythms {δ, 𝜃, α1, α2, ß1, ß2, γ1, γ2} was first beamformed with linear constrained minimum norm variance in the MEG data to determine 90 anatomical regions of interest (ROIs). A DFCG was then estimated using the imaginary part of phase lag value (iPLV) for both intra-frequency coupling (8) and cross-frequency coupling pairs (28). We analyzed DFCG profiles of neuromagnetic resting state recordings of 18 MCI patients and 22 healthy controls. We followed our model of identifying the dominant intrinsic coupling mode (DICM) across MEG sources and temporal segments, which further leads to the construction of an integrated DFCG (iDFCG). We then filtered statistically and topologically every snapshot of the iDFCG with data-driven approaches. An estimation of the normalized Laplacian transformation for every temporal segment of the iDFCG and the related eigenvalues created a 2D map based on the network metric time series of the eigenvalues (NMTSeigs). The NMTSeigs preserves the non-stationarity of the fluctuated synchronizability of iDCFG for each subject. Employing the initial set of 20 healthy elders and 20 MCI patients, as training set, we built an overcomplete dictionary set of network microstates (n µstates). Afterward, we tested the whole procedure in an extra blind set of 20 subjects for external validation. We succeeded in gaining a high classification accuracy on the blind dataset (85%), which further supports the proposed Markovian modeling of the evolution of brain states. The adaptation of appropriate neuroinformatic tools that combine advanced signal processing and network neuroscience tools could properly manipulate the non-stationarity of time-resolved FC patterns revealing a robust biomarker for MCI.

20.
Sci Rep ; 9(1): 17041, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745163

ABSTRACT

The specific connectivity of a neuronal network is reflected in the dynamics of the signals recorded on its nodes. The analysis of how the activity in one node predicts the behaviour of another gives the directionality in their relationship. However, each node is composed of many different elements which define the properties of the links. For instance, excitatory and inhibitory neuronal subtypes determine the functionality of the connection. Classic indexes such as the Granger causality (GC) quantifies these interactions, but they do not infer into the mechanism behind them. Here, we introduce an extension of the well-known GC that analyses the correlation associated to the specific influence that a transmitter node has over the receiver. This way, the G-causal link has a positive or negative effect if the predicted activity follows directly or inversely, respectively, the dynamics of the sender. The method is validated in a neuronal population model, testing the paradigm that excitatory and inhibitory neurons have a differential effect in the connectivity. Our approach correctly infers the positive or negative coupling produced by different types of neurons. Our results suggest that the proposed approach provides additional information on the characterization of G-causal connections, which is potentially relevant when it comes to understanding interactions in the brain circuits.


Subject(s)
Computational Biology/methods , Hippocampus/physiology , Models, Neurological , Nerve Net/physiology , Computer Simulation , Electrophysiological Phenomena/physiology , Humans , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL