Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 132(21): 211001, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856269

ABSTRACT

We study out-of-thermodynamic-equilibrium effects in neutron-star mergers with 3D general-relativistic neutrino-radiation large-eddy simulations. During mergers, the cores of the neutron stars remain cold (T∼ a few MeV) and out of thermodynamic equilibrium with trapped neutrinos originating from the hot collisional interface between the stars. However, within ∼2 to 3 ms matter and neutrinos reach equilibrium everywhere in the remnant massive neutron star. Our results show that dissipative effects, such as bulk viscosity, if present, are only active for a short window of time after the merger.

2.
Phys Rev Lett ; 128(16): 161102, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35522493

ABSTRACT

Using data from 289 numerical relativity simulations of binary neutron star mergers, we identify, for the first time, a robust quasiuniversal relation connecting the postmerger peak gravitational-wave frequency and the value of the density at the center of the maximum mass nonrotating neutron star. This relation offers a new possibility for precision equation-of-state constraints with next-generation ground-based gravitational-wave interferometers. Mock Einstein Telescope observations of fiducial events indicate that Bayesian inferences can constrain the maximum density to ∼15% (90% credibility level) for a single signal at the minimum sensitivity threshold for a detection. If the postmerger signal is included in a full-spectrum (inspiral-merger-postmerger) analysis of such a signal, the pressure-density function can be tightly constrained up to the maximum density, and the maximum neutron star mass can be measured with an accuracy better than 12% (90% credibility level).

3.
Phys Rev Lett ; 129(3): 032701, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35905358

ABSTRACT

Using 250 neutron star merger simulations with microphysics, we explore for the first time the role of nuclear incompressibility in the prompt collapse threshold for binaries with different mass ratios. We demonstrate that observations of prompt collapse thresholds, either from binaries with two different mass ratios or with one mass ratio but combined with the knowledge of the maximum neutron star mass or compactness, will constrain the incompressibility at the maximum neutron star density K_{max} to within tens of percent. This otherwise inaccessible measure of K_{max} can potentially reveal the presence of hyperons or quarks inside neutron stars.

4.
Phys Rev Lett ; 120(11): 111101, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29601774

ABSTRACT

We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

SELECTION OF CITATIONS
SEARCH DETAIL