ABSTRACT
The study evaluated the safety and effectiveness of the generic intravenous (IV) iron treatment (Feriv®), in a Spanish cohort with absolute iron deficiency (ID) (serum ferritin <50 ng/ml, with or without anaemia) (n = 122; 91% women; median age of 44 years [IQR: 33.7-54]). Iron-related biomarkers were measured before treatment (baseline), 2 weeks after beginning the protocol (intermediate control, IC) and between 7 and 10 days after treatment completion (final time-point). Primary efficacy endpoints were ferritin levels ≥ 50 ng/ml, anaemia restoration or an increase in haemoglobin (Hb) of at least one point in patients without baseline anaemia. After treatment, iron-related biomarkers improved, including ferritin, Hb, sideremia, transferrin, transferrin saturation index, soluble transferrin receptor (sTfR), and hepcidin. Baseline ferritin concentration (13.5 ng/ml [IQR: 8-24.2]) increased at the IC and continued rising at the final time-point, reaching a median ferritin of 222 ng/ml and 97.3% of patients ≥ 50 ng/ml. At the final time-point, anaemia prevalence decreased from 26.2% to 5%, while the 34.1% without baseline anaemia showed an increase in Hb of at least one point. Headache was the only drug-adverse event recorded in 2.3% of patients. At a late time-point (27.5 median weeks after ending therapy [IQR: 22-40]), evaluated in a subgroup of 66 patients, 18% had ferritin levels < 50 ng/ml. Multivariate analysis showed that low baseline ferritin and high sTfR/hepcidin ratio tended to be independently associated with ID recurrence. Feriv® is a safe, effective first-line treatment for absolute ID, with improvement of serum ferritin and Hb. ID recurrence was associated with the baseline degree of iron stores depletion, indicated by serum ferritin, and sTfR/hepcidin ratio.
Subject(s)
Ferric Oxide, Saccharated , Iron Deficiencies , Adult , Female , Humans , Male , Middle Aged , Anemia, Iron-Deficiency/drug therapy , Anemia, Iron-Deficiency/etiology , Biomarkers/blood , Dietary Supplements , Ferric Oxide, Saccharated/administration & dosage , Ferric Oxide, Saccharated/adverse effects , Ferritins/blood , Hemoglobins/metabolism , Hepcidins/blood , Iron/metabolism , Receptors, Transferrin , Transferrin , Administration, Intravenous , Iron Deficiencies/complications , Iron Deficiencies/drug therapyABSTRACT
INTRODUCTION: Severe COVID-19 can result in a significant and irreversible impact on long-term recovery and subsequent immune protection. Understanding the complex immune reactions may be useful for establishing clinically relevant monitoring. METHODS: Hospitalized adults with SARS-CoV-2 between March/October 2020 (n = 64) were selected. Cryopreserved peripheral blood mononuclear cells (PBMCs) and plasma samples were obtained at hospitalization (baseline) and 6 months after recovery. Immunological components' phenotyping and SARS-CoV-2-specific T-cell response were studied in PBMCs by flow cytometry. Up to 25 plasma pro/anti-inflammatory cytokines/chemokines were assessed by LEGENDplex immunoassays. The SARS-CoV-2 group was compared to matched healthy donors. RESULTS: Biochemical altered parameters during infection were normalized at a follow-up time point in the SARS-CoV-2 group. Most of the cytokine/chemokine levels were increased at baseline in the SARS-CoV-2 group. This group showed increased Natural Killer cells (NK) activation and decreased CD16high NK subset, which normalized six months later. They also presented a higher intermediate and patrolling monocyte proportion at baseline. T cells showed an increased terminally differentiated (TemRA) and effector memory (EM) subsets distribution in the SARS-CoV-2 group at baseline and continued to increase six months later. Interestingly, T-cell activation (CD38) in this group decreased at the follow-up time point, contrary to exhaustion markers (TIM3/PD1). In addition, we observed the highest SARS-CoV-2-specific T-cell magnitude response in TemRA CD4 T-cell and EM CD8 T-cell subsets at the six-months time point. CONCLUSIONS: The immunological activation in the SARS-CoV-2 group during hospitalization is reversed at the follow-up time point. However, the marked exhaustion pattern remains over time. This dysregulation could constitute a risk factor for reinfection and the development of other pathologies. Additionally, high SARS-CoV-2-specific T-cells response levels appear to be associated with infection severity.