ABSTRACT
The extracellular matrix (ECM) is a complex assembly of proteins that provide interstitial scaffolding and elastic recoil for human lungs. The pulmonary extracellular matrix is increasingly recognized as an independent bioactive entity, by creating biochemical and mechanical signals that influence disease pathogenesis, making it an attractive therapeutic target. However, the pulmonary ECM proteome ("matrisome") remains challenging to analyze by mass spectrometry due to its inherent biophysical properties and relatively low abundance. Here, we introduce a strategy designed for rapid and efficient characterization of the human pulmonary ECM using the photocleavable surfactant Azo. We coupled this approach with trapped ion mobility MS with diaPASEF to maximize the depth of matrisome coverage. Using this strategy, we identify nearly 400 unique matrisome proteins with excellent reproducibility that are known to be important in lung biology, including key core matrisome proteins.
Subject(s)
Extracellular Matrix , Lung , Proteomics , Humans , Proteomics/methods , Lung/metabolism , Extracellular Matrix/metabolism , Azo Compounds/chemistry , Extracellular Matrix Proteins/metabolism , Surface-Active Agents/chemistry , Proteome/analysis , Mass Spectrometry/methodsABSTRACT
The heart contracts incessantly and requires a constant supply of energy, utilizing numerous metabolic substrates, such as fatty acids, carbohydrates, lipids, and amino acids, to supply its high energy demands. Therefore, a comprehensive analysis of various metabolites is urgently needed for understanding cardiac metabolism; however, complete metabolome analyses remain challenging due to the broad range of metabolite polarities, which makes extraction and detection difficult. Herein, we implemented parallel metabolite extractions and high-resolution mass spectrometry (MS)-based methods to obtain a comprehensive analysis of the human heart metabolome. To capture the diverse range of metabolite polarities, we first performed six parallel liquid-liquid extractions (three monophasic, two biphasic, and one triphasic) of healthy human donor heart tissue. Next, we utilized two complementary MS platforms for metabolite detection: direct-infusion ultrahigh-resolution Fourier-transform ion cyclotron resonance (DI-FTICR) and high-resolution liquid chromatography quadrupole time-of-flight tandem MS (LC-Q-TOF-MS/MS). Using DI-FTICR MS, 9644 metabolic features were detected where 7156 were assigned a molecular formula and 1107 were annotated by accurate mass assignment. Using LC-Q-TOF-MS/MS, 21,428 metabolic features were detected where 285 metabolites were identified based on fragmentation matching against publicly available libraries. Collectively, 1340 heart metabolites were identified in this study, which span a wide range of polarities including polar (benzenoids, carbohydrates, and nucleosides) as well as nonpolar (phosphatidylcholines, acylcarnitines, and fatty acids) compounds. The results from this study will provide critical knowledge regarding the selection of appropriate extraction and MS detection methods for the analysis of the diverse classes of human heart metabolites.
Subject(s)
Heart Transplantation , Tandem Mass Spectrometry , Humans , Tissue Donors , Metabolomics/methods , Metabolome , Fatty Acids , CarbohydratesABSTRACT
MOTIVATION: Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. RESULTS: We have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a "one-stop shop" for characterizing both native protein complexes and proteoforms. AVAILABILITY AND IMPLEMENTATION: The MASH Native app, video tutorials, written tutorials, and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHSoftware.php. All data files shown in user tutorials are included with the MASH Native software in the download .zip file.
Subject(s)
Proteomics , Software , Databases, Factual , DNA-Binding Proteins , Mass Spectrometry , Proteomics/methodsABSTRACT
Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity.
Subject(s)
Neurodegenerative Diseases , Niemann-Pick Disease, Type C , Mice , Animals , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/metabolism , Proteomics/methods , ProteinsABSTRACT
Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.
ABSTRACT
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Subject(s)
Cholesterol , Niemann-Pick Disease, Type C , Animals , Cholesterol/metabolism , Proteins/metabolism , Biological Transport , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , MutationABSTRACT
BACKGROUND: Recent findings show that extracellular vesicle constituents can exert short- and long-range biological effects on neighboring cells in the brain, opening an exciting avenue for investigation in the field of neurodegenerative diseases. Although it is well documented that extracellular vesicles contain many lipids and are enriched in sphingomyelin, cholesterol, phosphatidylserines and phosphatidylinositols, no reports have addressed the lipidomic profile of brain derived EVs in the context of Metachromatic Leukodystrophy, a lysosomal storage disease with established metabolic alterations in sulfatides. METHODS: In this study, we isolated and characterized the lipid content of brain-derived EVs using the arylsulfatase A knockout mouse as a model of the human condition. RESULTS: Our results suggest that biogenesis of brain-derived EVs is a tightly regulated process in terms of size and protein concentration during postnatal life. Our lipidomic analysis demonstrated that sulfatides and their precursors (ceramides) as well as other lipids including fatty acids are altered in an age-dependent manner in EVs isolated from the brain of the knockout mouse. CONCLUSIONS: In addition to the possible involvement of EVs in the pathology of Metachromatic Leukodystrophy, our study underlines that measuring lipid signatures in EVs may be useful as biomarkers of disease, with potential application to other genetic lipidoses.
Subject(s)
Extracellular Vesicles , Leukodystrophy, Metachromatic , Animals , Biomarkers/metabolism , Brain/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/metabolism , Leukodystrophy, Metachromatic/pathology , Lipidomics , MiceABSTRACT
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-aged women, and it typically involves elevated androgen levels. Recently, it has been reported that human bone marrow mesenchymal stem cells (hBM-MSCs) can regulate androgen synthesis pathways. However, the details of the mechanism are still unclear. hBM-MSC-derived secreted factors (the secretome) are promising sources of cell-based therapy as they consist of various types of proteins. It is thus important to know which proteins interact with disease-implicated biomolecules. This work aimed to investigate which secretome components contain the key factor that inhibits testosterone synthesis. In this study, we fractionated hBM-MSC-conditioned media into three fractions based on their molecular weights and found that, of the three fractions, one had the ability to inhibit the androgen-producing genes efficiently. We also analyzed the components of this fraction and established a protein profile of the hBM-MSC secretome, which was shown to inhibit androgen synthesis. Our study describes a set of protein components present in the hBM-MSC secretome that can be used therapeutically to treat PCOS by regulating androgen production for the first time.
Subject(s)
Mesenchymal Stem Cells , Polycystic Ovary Syndrome , Adult , Androgens/metabolism , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Female , Humans , Mesenchymal Stem Cells/metabolism , Polycystic Ovary Syndrome/metabolism , SecretomeABSTRACT
Naked mole-rats (NMRs) are a long-lived animal that do not develop age-related diseases including neurodegeneration and cancer. Additionally, NMRs have a profound ability to consume reactive oxygen species (ROS) and survive long periods of oxygen deprivation. Here, we evaluated the unique proteome across selected brain regions of NMRs at different ages. Compared to mice, we observed numerous differentially expressed proteins related to altered mitochondrial function in all brain regions, suggesting that the mitochondria in NMRs may have adapted to compensate for energy demands associated with living in a harsh, underground environment. Keeping in mind that ROS can induce polyunsaturated fatty acid peroxidation under periods of neuronal stress, we investigated docosahexaenoic acid (DHA) and arachidonic acid (AA) peroxidation under oxygen-deprived conditions and observed that NMRs undergo DHA and AA peroxidation to a far less extent compared to mice. Further, our proteomic analysis also suggested enhanced peroxisome proliferator-activated receptor (PPAR)-retinoid X receptor (RXR) activation in NMRs via the PPARα-RXR and PPARγ-RXR complexes. Correspondingly, we present several lines of evidence supporting PPAR activation, including increased eicosapetenoic and omega-3 docosapentaenoic acid, as well as an upregulation of fatty acid-binding protein 3 and 4, known transporters of omega-3 fatty acids and PPAR activators. These results suggest enhanced PPARα and PPARγ signaling as a potential, innate neuroprotective mechanism in NMRs.
Subject(s)
PPAR alpha , PPAR gamma , Animals , Brain , Mice , Mole Rats , Neuroprotection , Oxygen , PPAR alpha/genetics , PPAR gamma/genetics , ProteomicsABSTRACT
Niemann-Pick disease type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized a consensus spectra analysis of MS imaging data sets and orthogonal LC/MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including PI, PIP, and PIP2, in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2α in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model, as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.
Subject(s)
Cerebellum/diagnostic imaging , Cerebellum/metabolism , Molecular Imaging , Niemann-Pick Disease, Type C/diagnostic imaging , Niemann-Pick Disease, Type C/metabolism , Phosphatidylinositols/metabolism , Animals , Chromatography, Liquid , Mass Spectrometry , Mice , Mice, KnockoutABSTRACT
Taurine is the most abundant free amino acid in the human body. It is found in relatively high concentrations (1-10 mM) in many animal tissues but not in plants. It has been studied since the early 1800s but has not been found to be covalently incorporated into proteins in any animal tissue. Taurine has been found in only one macromolecular complex as a post-transcriptional modification to mitochondrial tRNA. Tubulin is the subunit of microtubules found in all eukaryotic species and almost all eukaryotic cells and subject to numerous post-translational modifications (PTMs). An important PTM on α-tubulin is the removal and re-ligation of the final carboxyl residue, tyrosine. We here demonstrate that taurine can be covalently incorporated at the C-terminal end of alpha-tubulin in avian erythrocytes in a reaction that requires the de-tyrosination PTM and prevents the re-tyrosination PTM. Further, this is, to our knowledge, the first instance of taurine incorporation into a large protein.
Subject(s)
Taurine , Tubulin , Animals , Humans , Microtubules/metabolism , Protein Processing, Post-Translational , Taurine/metabolism , Tubulin/genetics , Tubulin/metabolism , Tyrosine/metabolismABSTRACT
Introduction: The role of mass spectrometry in biomolecule analysis has become paramount over the last several decades ranging in the analysis across model systems and human specimens. Accordingly, the presence of mass spectrometers in clinical laboratories has also expanded alongside the number of researchers investigating the protein, lipid, and metabolite composition of an array of biospecimens. With this increase in the number of omic investigations, it is important to consider the entire experimental strategy from sample collection and storage, data collection and analysis.Areas covered: In this short review, we outline considerations for working with clinical (e.g. human) specimens including blood, urine, and cerebrospinal fluid, with emphasis on sample handling, profiling composition, targeted measurements and relevance to disease. Discussions of integrated genomic or transcriptomic datasets are not included. A brief commentary is also provided regarding new technologies with clinical relevance.Expert opinion: The role of mass spectrometry to investigate clinically related specimens is on the rise and the ability to integrate multiple omics datasets from mass spectrometry measurements will be crucial to further understanding human health and disease.
Subject(s)
Mass Spectrometry/methods , Molecular Diagnostic Techniques/methods , Proteomics/methods , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Biomarkers/urine , Humans , Liquid Biopsy/methodsABSTRACT
Niemann-Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result of the genetic defect, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system causing both visceral and neurological defects. These manifest clinically as hepatosplenomegaly, liver dysfunction, and neurodegeneration. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive these pathologies remains less understood. In this study, it is sought to investigate free fatty acid levels in Npc1-/- mice with focus on the polyunsaturated ω-3 and ω-6 fatty acids. Since fatty acids are the main constituents of numerous lipids species, a discovery based lipidomic study of liver tissue in Npc1-/- mice is also performed. To this end, alterations in fatty acid synthesis, including the ω-3 and 6 fatty acids, are reported. Further, alterations in enzymes that regulate the synthesis of ω-3 and 6 fatty acids are reported. Analysis of the liver lipidome reveals alterations in both storage and membrane lipids including ceramides, fatty acids, phosphatidylcholamines, phosphatidylglycerols, phosphatidylethanolamines, sphingomyelins, and triacylglycerols in Npc1-/- mice at a late stage of disease.
Subject(s)
Disease Models, Animal , Fatty Acids/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Lipids/analysis , Liver/metabolism , Niemann-Pick Disease, Type C/pathology , Animals , Hep G2 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/metabolismABSTRACT
Niemann-Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. This abnormal accumulation results in a cascade of pathophysiological events including progressive, cerebellar neurodegeneration, among others. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive neurodegeneration remain unclear. In the current study, a) the use of a commercial, highly efficient standard flow-ESI platform for protein biomarker identification is implemented and b) protein biomarkers are identified and evaluated at a terminal time point in the NPC1 null mouse model. In this study, alterations are observed in proteins related to fatty acid homeostasis, calcium binding and regulation, lysosomal regulation, and inositol biosynthesis and metabolism, as well as signaling by Rho family GTPases. New observations from this study include altered expression of Pcp2 and Limp2 in Npc1 mutant mice relative to control, with Pcp2 exhibiting multiple isoforms and specific to the cerebella. This study provides valuable insight into pathways altered in the late-stage pathophysiology of NPC1.
Subject(s)
CD36 Antigens/genetics , Guanine Nucleotide Exchange Factors/genetics , Intracellular Signaling Peptides and Proteins/genetics , Lysosomal Membrane Proteins/genetics , Neuropeptides/genetics , Niemann-Pick Disease, Type C/genetics , Animals , Cholesterol/genetics , Chromatography, Liquid , Disease Models, Animal , Humans , Liver/metabolism , Lysosomes/genetics , Mice , Mutation , Niemann-Pick C1 Protein , Proteomics/methods , Signal Transduction/genetics , Spectrometry, Mass, Electrospray IonizationABSTRACT
Niemann-Pick disease, type C1 (NPC1) is a rare, autosomal recessive, lipid storage disorder caused by mutations in NPC1. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. Clinically, patients can present with splenomegaly and hepatomegaly. In the current study, we analyzed the differential proteome of the spleen in symptomatic Npc1-/- mice to complement previous studies focused on the differential proteome of the liver, and then evaluated biomolecules that may serve as tissue biomarkers. The proteomic analysis revealed altered pathways in NPC1 representing different functional categories including heme synthesis, cellular regulation and phosphoinositide metabolism in both tissues. Differential proteins included several activators of the ubiquitous and critical protein, Akt, a major kinase involved in multiple cellular processes. Evaluation of Akt revealed decreased expression in both the liver and spleen tissues of symptomatic Npc1-/- mice. Upstream regulation analysis also suggested that miR-155 may modulate the differences of known downstream protein targets observed in our dataset. Upon evaluation of miR-155, we observed an increased expression in the liver and decreased expression in the spleen of symptomatic Npc1-/- mice. Here, we propose that miR-155 may be a novel indicator of spleen and liver pathology in NPC1.
Subject(s)
Biomarkers , Liver/metabolism , MicroRNAs/metabolism , Niemann-Pick Disease, Type C/pathology , Spleen/metabolism , Animals , Disease Models, Animal , Heme/biosynthesis , Liver/pathology , Mice , Mice, Inbred BALB C , Niemann-Pick Disease, Type C/metabolism , Phosphatidylinositols/metabolism , Proteomics , Spleen/pathologyABSTRACT
Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.
Subject(s)
Alzheimer Disease/physiopathology , CA1 Region, Hippocampal/physiology , Channelopathies/physiopathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Neuronal Plasticity , Pyramidal Cells/physiology , Action Potentials , Aging , Animals , CA1 Region, Hippocampal/ultrastructure , Disease Models, Animal , Endoplasmic Reticulum/physiology , Female , Male , Mice, Transgenic , Pyramidal Cells/ultrastructureABSTRACT
Protein arginine methyl transferase 1 (PRMT1) was shown to be up-regulated in cancers and important for cancer cell proliferation. However, the role of PRMT1 in lung cancer progression and metastasis remains incompletely understood. In the present study, we show that PRMT1 is an important regulator of epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion, which are essential processes during cancer progression, and metastasis. Additionally, we have identified Twist1, a basic helix-loop-helix transcription factor and a well-known E-cadherin repressor, as a novel PRMT1 substrate. Taken together, we show that PRMT1 is a novel regulator of EMT and arginine 34 (Arg-34) methylation of Twist1 as a unique "methyl arginine mark" for active E-cadherin repression. Therefore, targeting PRMT1-mediated Twist1 methylation might represent a novel strategy for developing new anti-invasive/anti-metastatic drugs. Moreover, methylated Twist1 (Arg-34), as such, could also emerge as a potential important biomarker for lung cancer.
Subject(s)
Carcinoma, Non-Small-Cell Lung/secondary , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Animals , Arginine/genetics , Blotting, Western , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , DNA Methylation , Fluorescent Antibody Technique, Indirect , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Molecular Sequence Data , Neoplasm Invasiveness , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Tumor Cells, Cultured , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Wound Healing , Xenograft Model Antitumor AssaysABSTRACT
Niemann-Pick, type C (NPC) is a fatal, neurovisceral lysosomal storage disorder with progressive neurodegeneration and no FDA-approved therapy. Significant efforts have been focused on the development of therapeutic options, and 2-hydroxypropyl-ß-cyclodextrin (HP-b-CD) has emerged as a promising candidate. In cell culture, HP-b-CD ameliorates cholesterol storage in endo/lysosomes, a hallmark of the disorder. Furthermore, in animal studies, treatment with HP-b-CD delays neurodegeneration and extends lifespan. While HP-b-CD has been promising in vitro and in vivo, a clear understanding of the mechanism(s) of action is lacking. Utilizing a neuron-like cell culture model of SH-SY5Y differentiated cells and U18666A to induce the NPC phenotype, we report here a large-scale mass-spectrometry-based proteomic study to evaluate proteome changes upon treatment with these small molecules. In this study, we show that differentiated SH-SY5Y cells display morphological changes representative of neuronal-like cells along with increased levels of proliferation markers. Inhibition of the NPC cholesterol transporter 1 protein by U18666A resulted in increased levels of known NPC markers including SCARB2/LIMP2 and LAMP2. Finally, investigation of HP-b-CD treatment was performed where we observe that, although HP-b-CD reduces cholesterol storage, levels of NPC1 and NPC2 are not normalized to control levels. This finding further supports the need for a proteostasis strategy for NPC drug development. Moreover, proteins that were dysregulated in the U18666A model of NPC and normalized to control levels suggest that HP-b-CD promotes exocytosis in this neuron-like model. Utilizing state of the art mass spectrometry analysis, these data demonstrate newly reported changes with pharmacological perturbations related to NPC disease and provide insight into the mechanisms of HP-b-CD as a potential therapeutic.
Subject(s)
Neuroblastoma , Niemann-Pick Disease, Type C , beta-Cyclodextrins , Animals , Humans , 2-Hydroxypropyl-beta-cyclodextrin/metabolism , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , beta-Cyclodextrins/pharmacology , beta-Cyclodextrins/metabolism , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Proteomics , Neuroblastoma/metabolism , Neurons , CholesterolABSTRACT
The heart contracts incessantly and requires a constant supply of energy, utilizing numerous metabolic substrates such as fatty acids, carbohydrates, lipids, and amino acids to supply its high energy demands. Therefore, a comprehensive analysis of various metabolites is urgently needed for understanding cardiac metabolism; however, complete metabolome analyses remain challenging due to the broad range of metabolite polarities which makes extraction and detection difficult. Herein, we implemented parallel metabolite extractions and high-resolution mass spectrometry (MS)-based methods to obtain a comprehensive analysis of the human heart metabolome. To capture the diverse range of metabolite polarities, we first performed six parallel liquid-liquid extractions (three monophasic, two biphasic, and one triphasic extractions) of healthy human donor heart tissue. Next, we utilized two complementary MS platforms for metabolite detection - direct-infusion ultrahigh-resolution Fourier-transform ion cyclotron resonance (DI-FTICR) and high-resolution liquid chromatography quadrupole time-of-flight tandem MS (LC-Q-TOF MS/MS). Using DI-FTICR MS, 9,521 metabolic features were detected where 7,699 were assigned a chemical formula and 1,756 were assigned an annotated by accurate mass assignment. Using LC-Q-TOF MS/MS, 21,428 metabolic features were detected where 626 metabolites were identified based on fragmentation matching against publicly available libraries. Collectively, 2276 heart metabolites were identified in this study which span a wide range of polarities including polar (benzenoids, alkaloids and derivatives and nucleosides) as well as non-polar (phosphatidylcholines, acylcarnitines, and fatty acids) compounds. The results of this study will provide critical knowledge regarding the selection of appropriate extraction and MS detection methods for the analysis of the diverse classes of human heart metabolites.
ABSTRACT
MALDI-TOF MS is a powerful tool to analyze biomolecules owing to its soft ionization nature and generally results in simple spectra of singly charged ions. Moreover, implementation of the technology in imaging mode provides a means to spatially map analytes in situ. Recently, a new matrix, DBDA (N1,N4-dibenzylidenebenzene-1,4-diamine) was reported to facilitate the ionization of free fatty acids in the negative ion mode. Building on this finding, we sought to implement DBDA for MALDI mass spectrometry imaging studies in brain tissue and successfully map oleic acid, palmitic acid, stearic acid, docosahexaenoic acid and arachidonic acid using mouse brain sections. Moreover, we hypothesized that DBDA would provide superior ionization for sulfatides, a class of sulfolipids, with multiple biological functions. Herein we also demonstrate that DBDA is ideal for MALDI mass spectrometry imaging of fatty acids and sulfatides in brain tissue sections. Additionally, we show enhanced ionization of sulfatides using DBDA compared to three different traditionally used MALDI matrices. Together these results provide new opportunities for studies to measure sulfatides by MALDI-TOF MS including in imaging modes.