Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
Cell ; 180(6): 1115-1129.e13, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32200799

ABSTRACT

Influenza A virus (IAV) is a lytic RNA virus that triggers receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated pathways of apoptosis and mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptosis in infected cells. ZBP1 initiates RIPK3-driven cell death by sensing IAV RNA and activating RIPK3. Here, we show that replicating IAV generates Z-RNAs, which activate ZBP1 in the nucleus of infected cells. ZBP1 then initiates RIPK3-mediated MLKL activation in the nucleus, resulting in nuclear envelope disruption, leakage of DNA into the cytosol, and eventual necroptosis. Cell death induced by nuclear MLKL was a potent activator of neutrophils, a cell type known to drive inflammatory pathology in virulent IAV disease. Consequently, MLKL-deficient mice manifest reduced nuclear disruption of lung epithelia, decreased neutrophil recruitment into infected lungs, and increased survival following a lethal dose of IAV. These results implicate Z-RNA as a new pathogen-associated molecular pattern and describe a ZBP1-initiated nucleus-to-plasma membrane "inside-out" death pathway with potentially pathogenic consequences in severe cases of influenza.


Subject(s)
Influenza A virus/genetics , Necroptosis/genetics , RNA-Binding Proteins/metabolism , Animals , Apoptosis/genetics , Cell Death/genetics , Cell Line, Tumor , Female , Influenza A virus/metabolism , Male , Mice , Mice, Inbred C57BL , Necrosis/metabolism , Phosphorylation , Protein Kinases/metabolism , RNA/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/physiology
2.
Nat Immunol ; 22(8): 969-982, 2021 08.
Article in English | MEDLINE | ID: mdl-34312548

ABSTRACT

The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.


Subject(s)
DNA-Binding Proteins/metabolism , Intraepithelial Lymphocytes/cytology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Regulatory/cytology , Transcription Factors/metabolism , Animals , Cell Differentiation/immunology , Colitis/immunology , Colitis/prevention & control , DNA-Binding Proteins/genetics , Disease Models, Animal , Female , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Transcription Factors/genetics , Transcription, Genetic/genetics
3.
Mol Cell ; 81(13): 2752-2764.e6, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34081901

ABSTRACT

Metabolic reprogramming is a common feature of many human cancers, including acute myeloid leukemia (AML). However, the upstream regulators that promote AML metabolic reprogramming and the benefits conferred to leukemia cells by these metabolic changes remain largely unknown. We report that the transcription factor ATF3 coordinates serine and nucleotide metabolism to maintain cell cycling, survival, and the differentiation blockade in AML. Analysis of mouse and human AML models demonstrate that ATF3 directly activates the transcription of genes encoding key enzymatic regulators of serine synthesis, one-carbon metabolism, and de novo purine and pyrimidine synthesis. Total steady-state polar metabolite and heavy isotope tracing analyses show that ATF3 inhibition reduces de novo serine synthesis, impedes the incorporation of serine-derived carbons into newly synthesized purines, and disrupts pyrimidine metabolism. Importantly, exogenous nucleotide supplementation mitigates the anti-leukemia effects of ATF3 inhibition. Together, these findings reveal the dependence of AML on ATF3-regulated serine and nucleotide metabolism.


Subject(s)
Activating Transcription Factor 3/metabolism , Cell Cycle , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/metabolism , Nucleotides/metabolism , Serine/metabolism , Activating Transcription Factor 3/genetics , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , Nucleotides/genetics , Serine/genetics
4.
Nature ; 606(7914): 594-602, 2022 06.
Article in English | MEDLINE | ID: mdl-35614224

ABSTRACT

Only a small proportion of patients with cancer show lasting responses to immune checkpoint blockade (ICB)-based monotherapies. The RNA-editing enzyme ADAR1 is an emerging determinant of resistance to ICB therapy and prevents ICB responsiveness by repressing immunogenic double-stranded RNAs (dsRNAs), such as those arising from the dysregulated expression of endogenous retroviral elements (EREs)1-4. These dsRNAs trigger an interferon-dependent antitumour response by activating A-form dsRNA (A-RNA)-sensing proteins such as MDA-5 and PKR5. Here we show that ADAR1 also prevents the accrual of endogenous Z-form dsRNA elements (Z-RNAs), which were enriched in the 3' untranslated regions of interferon-stimulated mRNAs. Depletion or mutation of ADAR1 resulted in Z-RNA accumulation and activation of the Z-RNA sensor ZBP1, which culminated in RIPK3-mediated necroptosis. As no clinically viable ADAR1 inhibitors currently exist, we searched for a compound that can override the requirement for ADAR1 inhibition and directly activate ZBP1. We identified a small molecule, the curaxin CBL0137, which potently activates ZBP1 by triggering Z-DNA formation in cells. CBL0137 induced ZBP1-dependent necroptosis in cancer-associated fibroblasts and reversed ICB unresponsiveness in mouse models of melanoma. Collectively, these results demonstrate that ADAR1 represses endogenous Z-RNAs and identifies ZBP1-mediated necroptosis as a new determinant of tumour immunogenicity masked by ADAR1. Therapeutic activation of ZBP1-induced necroptosis provides a readily translatable avenue for rekindling the immune responsiveness of ICB-resistant human cancers.


Subject(s)
Adenosine Deaminase , Necroptosis , Neoplasms , RNA-Binding Proteins , 3' Untranslated Regions , Adenosine Deaminase/metabolism , Animals , Cancer-Associated Fibroblasts , Carbazoles/pharmacology , Humans , Immunotherapy/trends , Interferons/metabolism , Melanoma , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , RNA, Double-Stranded/immunology , RNA-Binding Proteins/metabolism
5.
Immunity ; 41(6): 934-46, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25526308

ABSTRACT

Gradations in extracellular regulated kinase (ERK) signaling have been implicated in essentially every developmental checkpoint or differentiation process encountered by lymphocytes. Yet, despite intensive effort, the molecular basis by which differences in ERK activation specify alternative cell fates remains poorly understood. We report here that differential ERK signaling controls lymphoid-fate specification through an alternative mode of action. While ERK phosphorylates most substrates, such as RSK, by targeting them through its D-domain, this well-studied mode of ERK action was dispensable for development of γδ T cells. Instead, development of γδ T cells was dependent upon an alternative mode of action mediated by the DEF-binding pocket (DBP) of ERK. This domain enabled ERK to bind a distinct and select set of proteins required for specification of the γδ fate. These data provide the first in vivo demonstration for the role of DBP-mediated interactions in orchestrating alternate ERK-dependent developmental outcomes.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Enzyme Activation/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Mice , Mice, Knockout , Mice, Mutant Strains , Mice, Transgenic , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Stability , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Signal Transduction/genetics , Substrate Specificity/genetics
6.
Mol Cell Proteomics ; 19(12): 2068-2090, 2020 12.
Article in English | MEDLINE | ID: mdl-32994315

ABSTRACT

Endometrial carcinoma (EC) is the most common gynecologic malignancy in the United States, with limited effective targeted therapies. Endometrial tumors exhibit frequent alterations in protein kinases, yet only a small fraction of the kinome has been therapeutically explored. To identify kinase therapeutic avenues for EC, we profiled the kinome of endometrial tumors and normal endometrial tissues using Multiplexed Inhibitor Beads and Mass Spectrometry (MIB-MS). Our proteomics analysis identified a network of kinases overexpressed in tumors, including Serine/Arginine-Rich Splicing Factor Kinase 1 (SRPK1). Immunohistochemical (IHC) analysis of endometrial tumors confirmed MIB-MS findings and showed SRPK1 protein levels were highly expressed in endometrioid and uterine serous cancer (USC) histological subtypes. Moreover, querying large-scale genomics studies of EC tumors revealed high expression of SRPK1 correlated with poor survival. Loss-of-function studies targeting SRPK1 in an established USC cell line demonstrated SRPK1 was integral for RNA splicing, as well as cell cycle progression and survival under nutrient deficient conditions. Profiling of USC cells identified a compensatory response to SRPK1 inhibition that involved EGFR and the up-regulation of IGF1R and downstream AKT signaling. Co-targeting SRPK1 and EGFR or IGF1R synergistically enhanced growth inhibition in serous and endometrioid cell lines, representing a promising combination therapy for EC.


Subject(s)
Endometrial Neoplasms/enzymology , Mass Spectrometry , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteomics , Apoptosis/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/genetics , Endometrial Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Humans , Neoplasms, Cystic, Mucinous, and Serous/pathology , Prognosis , Protein Serine-Threonine Kinases/metabolism , Proteogenomics , RNA Splicing/genetics , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Survival Analysis , Uterine Neoplasms/pathology
7.
Mol Biol Evol ; 36(1): 39-53, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30295892

ABSTRACT

ThPOK is a "master regulator" of T lymphocyte lineage choice, whose presence or absence is sufficient to dictate development to the CD4 or CD8 lineages, respectively. Induction of ThPOK is transcriptionally regulated, via a lineage-specific silencer element, SilThPOK. Here, we take advantage of the available genome sequence data as well as site-specific gene targeting technology, to evaluate the functional conservation of ThPOK regulation across mammalian evolution, and assess the importance of motif grammar (order and orientation of TF binding sites) on SilThPOK function in vivo. We make three important points: First, the SilThPOK is present in marsupial and placental mammals, but is not found in available genome assemblies of nonmammalian vertebrates, indicating that it arose after divergence of mammals from other vertebrates. Secondly, by replacing the murine SilThPOK in situ with its marsupial equivalent using a knockin approach, we demonstrate that the marsupial SilThPOK supports correct CD4 T lymphocyte lineage-specification in mice. To our knowledge, this is the first in vivo demonstration of functional equivalency for a silencer element between marsupial and placental mammals using a definitive knockin approach. Finally, we show that alteration of the position/orientation of a highly conserved region within the murine SilThPOK is sufficient to destroy silencer activity in vivo, demonstrating that motif grammar of this "solid" synteny block is critical for silencer function. Dependence of SilThPOK function on motif grammar conserved since the mid-Jurassic age, 165 Ma, suggests that the SilThPOK operates as a silenceosome, by analogy with the previously proposed enhanceosome model.


Subject(s)
Biological Evolution , Opossums/genetics , Silencer Elements, Transcriptional , Transcription Factors/genetics , Amino Acid Sequence , Animals , Conserved Sequence , Humans , Mice , T-Lymphocytes/metabolism , Transcription Factors/metabolism
8.
Breast Cancer Res ; 21(1): 46, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30922380

ABSTRACT

BACKGROUND: Full-term pregnancy (FTP) at an early age confers long-term protection against breast cancer. Previously, we reported that a FTP imprints a specific gene expression profile in the breast of postmenopausal women. Herein, we evaluated gene expression changes induced by parity in the breast of premenopausal women. METHODS: Gene expression profiling of normal breast tissue from 30 nulliparous (NP) and 79 parous (P) premenopausal volunteers was performed using Affymetrix microarrays. In addition to a discovery/validation analysis, we conducted an analysis of gene expression differences in P vs. NP women as a function of time since last FTP. Finally, a laser capture microdissection substudy was performed to compare the gene expression profile in the whole breast biopsy with that in the epithelial and stromal tissues. RESULTS: Discovery/validation analysis identified 43 differentially expressed genes in P vs. NP breast. Analysis of expression as a function of time since FTP revealed 286 differentially expressed genes (238 up- and 48 downregulated) comparing all P vs. all NP, and/or P women whose last FTP was less than 5 years before biopsy vs. all NP women. The upregulated genes showed three expression patterns: (1) transient: genes upregulated after FTP but whose expression levels returned to NP levels. These genes were mainly related to immune response, specifically activation of T cells. (2) Long-term changing: genes upregulated following FTP, whose expression levels decreased with increasing time since FTP but did not return to NP levels. These were related to immune response and development. (3) Long-term constant: genes that remained upregulated in parous compared to nulliparous breast, independently of time since FTP. These were mainly involved in development/cell differentiation processes, and also chromatin remodeling. Lastly, we found that the gene expression in whole tissue was a weighted average of the expression in epithelial and stromal tissues. CONCLUSIONS: Genes transiently activated by FTP may have a role in protecting the mammary gland against neoplastically transformed cells through activation of T cells. Furthermore, chromatin remodeling and cell differentiation, represented by the genes that are maintained upregulated long after the FTP, may be responsible for the lasting preventive effect against breast cancer.


Subject(s)
Gene Expression Profiling , Genomics , Mammary Glands, Human/metabolism , Parity , Premenopause , Transcriptome , Biomarkers , Computational Biology/methods , Female , Gene Expression Profiling/methods , Gene Expression Regulation , Gene Ontology , Genomics/methods , Humans , Immunohistochemistry , Reproducibility of Results , Signal Transduction
9.
J Cell Physiol ; 233(11): 8952-8961, 2018 11.
Article in English | MEDLINE | ID: mdl-29904909

ABSTRACT

Malignant mesothelioma (MM) is a therapy-resistant cancer arising primarily from the lining of the pleural and peritoneal cavities. The most frequently altered genes in human MM are cyclin-dependent kinase inhibitor 2A (CDKN2A), which encodes components of the p53 (p14ARF) and RB (p16INK4A) pathways, BRCA1-associated protein 1 (BAP1), and neurofibromatosis 2 (NF2). Furthermore, the p53 gene (TP53) itself is mutated in ~15% of MMs. In many MMs, the PI3K-PTEN-AKT-mTOR signaling node is hyperactivated, which contributes to tumor cell survival and therapeutic resistance. Here, we demonstrate that the inactivation of both Tp53 and Pten in the mouse mesothelium is sufficient to rapidly drive aggressive MMs. PtenL/L ;Tp53L/L mice injected intraperitoneally or intrapleurally with adenovirus-expressing Cre recombinase developed high rates of peritoneal and pleural MMs (92% of mice with a median latency of 9.4 weeks and 56% of mice with a median latency of 19.3 weeks, respectively). MM cells from these mice showed consistent activation of Akt-mTor signaling, chromosome breakage or aneuploidy, and upregulation of Myc; occasional downregulation of Bap1 was also observed. Collectively, these findings suggest that when Pten and Tp53 are lost in combination in mesothelial cells, DNA damage is not adequately repaired and genomic instability is widespread, whereas the activation of Akt due to Pten loss protects genomically damaged cells from apoptosis, thereby increasing the likelihood of tumor formation. Additionally, the mining of an online dataset (The Cancer Genome Atlas) revealed codeletions of PTEN and TP53 and/or CDKN2A/p14ARF in ~25% of human MMs, indicating that cooperative losses of these genes contribute to the development of a significant proportion of these aggressive neoplasms and suggesting key target pathways for therapeutic intervention.


Subject(s)
Lung Neoplasms/genetics , Mesothelioma/genetics , PTEN Phosphohydrolase/genetics , Pleural Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Carcinogenesis/genetics , Cell Proliferation/genetics , Disease Models, Animal , Humans , Lung Neoplasms/pathology , Mesothelioma/pathology , Mesothelioma, Malignant , Mice , PTEN Phosphohydrolase/antagonists & inhibitors , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/pathology , Pleural Neoplasms/pathology , Signal Transduction , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
10.
Gastroenterology ; 151(5): 986-998.e4, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27453547

ABSTRACT

BACKGROUND & AIMS: Chronic infection with hepatitis B virus (HBV) progresses through different phases. The first, called the immune-tolerant phase, has been associated with a lack of disease activity. We examined HBV-DNA integration, clonal hepatocyte expansion, HBV antigen expression, and HBV-specific immune responses in patients in the immune-tolerant phase to assess whether this designation is appropriate or if there is evidence of disease activity. METHODS: We studied HBV-DNA integration, clonal hepatocyte expansion, and expression of hepatitis B surface antigen and core antigen in liver tissues from 26 patients with chronic HBV infection (ages, 14-39 y); 9 patients were positive for hepatitis B e antigen (HBeAg) in the immune-tolerant phase and were matched for age with 10 HBeAg-positive patients with active disease and 7 HBeAg-negative patients with active disease. Peripheral blood samples were collected and HBV-specific T cells were quantified for each group. RESULTS: Detection of HBV antigens differed among groups. However, unexpectedly high numbers of HBV-DNA integrations, randomly distributed among chromosomes, were detected in all groups. Clonal hepatocyte expansion in patients considered immune tolerant also was greater than expected, potentially in response to hepatocyte turnover mediated by HBV-specific T cells, which were detected in peripheral blood cells from patients in all phases of infection. CONCLUSIONS: We measured HBV-specific T cells, HBV-DNA integration, and clonal hepatocyte expansion in different disease phases of young patients with chronic hepatitis B, with emphasis on the so-called immune-tolerant phase. A high level of HBV-DNA integration and clonal hepatocyte expansion in patients considered immune tolerant indicated that hepatocarcinogenesis could be underway-even in patients with early stage chronic HBV infection. Our findings do not support the concepts that this phase is devoid of markers of disease progression or that an immune response has not been initiated. We propose that this early phase be called a high-replication, low-inflammation stage. The timing of therapeutic interventions to minimize further genetic damage to the hepatocyte population should be reconsidered.


Subject(s)
Hepatitis B Surface Antigens/metabolism , Hepatitis B e Antigens/metabolism , Hepatitis B virus/immunology , Hepatitis B, Chronic/virology , Hepatocytes/virology , Immune Tolerance , Virus Integration/immunology , Adolescent , Adult , Biomarkers/metabolism , Case-Control Studies , DNA, Viral/immunology , Female , Hepatitis B virus/genetics , Hepatitis B, Chronic/immunology , Hepatocytes/immunology , Humans , Male , Matched-Pair Analysis , Young Adult
11.
PLoS Pathog ; 10(12): e1004566, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25521078

ABSTRACT

Dengue virus (DENV) is a re-emerging arthropod borne flavivirus that infects more than 300 million people worldwide, leading to 50,000 deaths annually. Because dendritic cells (DC) in the skin and blood are the first target cells for DENV, we sought to investigate the early molecular events involved in the host response to the virus in primary human monocyte-derived dendritic cells (Mo-DC). Using a genome-wide transcriptome analysis of DENV2-infected human Mo-DC, three major responses were identified within hours of infection - the activation of IRF3/7/STAT1 and NF-κB-driven antiviral and inflammatory networks, as well as the stimulation of an oxidative stress response that included the stimulation of an Nrf2-dependent antioxidant gene transcriptional program. DENV2 infection resulted in the intracellular accumulation of reactive oxygen species (ROS) that was dependent on NADPH-oxidase (NOX). A decrease in ROS levels through chemical or genetic inhibition of the NOX-complex dampened the innate immune responses to DENV infection and facilitated DENV replication; ROS were also essential in driving mitochondrial apoptosis in infected Mo-DC. In addition to stimulating innate immune responses to DENV, increased ROS led to the activation of bystander Mo-DC which up-regulated maturation/activation markers and were less susceptible to viral replication. We have identified a critical role for the transcription factor Nrf2 in limiting both antiviral and cell death responses to the virus by feedback modulation of oxidative stress. Silencing of Nrf2 by RNA interference increased DENV-associated immune and apoptotic responses. Taken together, these data demonstrate that the level of oxidative stress is critical to the control of both antiviral and apoptotic programs in DENV-infected human Mo-DC and highlight the importance of redox homeostasis in the outcome of DENV infection.


Subject(s)
Apoptosis/physiology , Dendritic Cells/physiology , Dendritic Cells/virology , Dengue Virus/physiology , Immunity, Innate/physiology , Oxidative Stress/physiology , Cells, Cultured , Dendritic Cells/pathology , Gene Expression Profiling , Humans , In Vitro Techniques , Interferon Regulatory Factor-3/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/metabolism , Virus Replication/physiology
12.
PLoS Pathog ; 9(4): e1003298, 2013.
Article in English | MEDLINE | ID: mdl-23633948

ABSTRACT

The RIG-I like receptor pathway is stimulated during RNA virus infection by interaction between cytosolic RIG-I and viral RNA structures that contain short hairpin dsRNA and 5' triphosphate (5'ppp) terminal structure. In the present study, an RNA agonist of RIG-I was synthesized in vitro and shown to stimulate RIG-I-dependent antiviral responses at concentrations in the picomolar range. In human lung epithelial A549 cells, 5'pppRNA specifically stimulated multiple parameters of the innate antiviral response, including IRF3, IRF7 and STAT1 activation, and induction of inflammatory and interferon stimulated genes - hallmarks of a fully functional antiviral response. Evaluation of the magnitude and duration of gene expression by transcriptional profiling identified a robust, sustained and diversified antiviral and inflammatory response characterized by enhanced pathogen recognition and interferon (IFN) signaling. Bioinformatics analysis further identified a transcriptional signature uniquely induced by 5'pppRNA, and not by IFNα-2b, that included a constellation of IRF7 and NF-kB target genes capable of mobilizing multiple arms of the innate and adaptive immune response. Treatment of primary PBMCs or lung epithelial A549 cells with 5'pppRNA provided significant protection against a spectrum of RNA and DNA viruses. In C57Bl/6 mice, intravenous administration of 5'pppRNA protected animals from a lethal challenge with H1N1 Influenza, reduced virus titers in mouse lungs and protected animals from virus-induced pneumonia. Strikingly, the RIG-I-specific transcriptional response afforded partial protection from influenza challenge, even in the absence of type I interferon signaling. This systems approach provides transcriptional, biochemical, and in vivo analysis of the antiviral efficacy of 5'pppRNA and highlights the therapeutic potential associated with the use of RIG-I agonists as broad spectrum antiviral agents.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/drug therapy , RNA, Viral/pharmacology , Receptors, Retinoic Acid/agonists , Receptors, Retinoic Acid/metabolism , Animals , Antiviral Agents/therapeutic use , Cell Line , Enzyme Activation , Humans , Immunity, Innate , Inflammation , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , RNA Interference , RNA, Viral/genetics , RNA, Viral/metabolism , RNA, Viral/therapeutic use , Receptors, Retinoic Acid/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 109(26): 10456-61, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22689986

ABSTRACT

Analysis of the molecular etiologies of SCID has led to important insights into the control of immune cell development. Most cases of SCID result from either X-linked or autosomal recessive inheritance of mutations in a known causative gene. However, in some cases, the molecular etiology remains unclear. To identify the cause of SCID in a patient known to lack the protein-tyrosine phosphatase CD45, we used SNP arrays and whole-exome sequencing. The patient's mother was heterozygous for an inactivating mutation in CD45 but the paternal alleles exhibited no detectable mutations. The patient exhibited a single CD45 mutation identical to the maternal allele. Patient SNP array analysis revealed no change in copy number but loss of heterozygosity for the entire length of chromosome 1 (Chr1), indicating that disease was caused by uniparental disomy (UPD) with isodisomy of the entire maternal Chr1 bearing the mutant CD45 allele. Nonlymphoid blood cells and other mesoderm- and ectoderm-derived tissues retained UPD of the entire maternal Chr1 in this patient, who had undergone successful bone marrow transplantation. Exome sequencing revealed mutations in seven additional genes bearing nonsynonymous SNPs predicted to have deleterious effects. These findings are unique in representing a reported case of SCID caused by UPD and suggest UPD should be considered in SCID and other recessive disorders, especially when the patient appears homozygous for an abnormal gene found in only one parent. Evaluation for alterations in other genes affected by UPD should also be considered in such cases.


Subject(s)
Leukocyte Common Antigens/immunology , Severe Combined Immunodeficiency/immunology , Uniparental Disomy , Heterozygote , Humans , Leukocyte Common Antigens/genetics , Loss of Heterozygosity , Polymorphism, Single Nucleotide
14.
Oncogene ; 43(10): 729-743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243078

ABSTRACT

RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , Melanoma/genetics , Proteomics , Melanocytes , Carcinogenesis , Cell Line , Cyclin-Dependent Kinase 9 , rac1 GTP-Binding Protein/genetics
15.
Gynecol Oncol ; 130(3): 560-4, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23774303

ABSTRACT

OBJECTIVE: Serous borderline tumor (SBT) is a unique histopathologic entity of the ovary, believed to be intermediate between benign cystadenoma and invasive low-grade serous carcinoma. While somatic mutations in the KRAS or BRAF, and rarely ERBB2, genes have been well characterized in SBTs, other genetic alterations have not been described. Toward a more comprehensive understanding of the molecular genetic architecture of SBTs, we undertook whole exome sequencing of this tumor type. METHODS: Following pathologic review and laser capture microdissection to enrich for tumor cells, whole exomes were prepared from DNA of two independent SBTs and subjected to massively parallel DNA sequencing. RESULTS: Both tumors contained an activating mutation of the BRAF gene. A total of 15 additional somatic mutations were identified, nine in one tumor and six in the other. Eleven were missense mutations and four were nonsense or deletion mutations. Fourteen of the 16 genes found to be mutated in this study have been reported to be mutated in other cancers. Furthermore, 12 of these genes are mutated in ovarian cancers. The FBXW7 and KIAA1462 genes are noteworthy candidates for a pathogenic role in serous borderline tumorigenesis. CONCLUSIONS: These findings suggest that a very small number of somatic genetic mutations are characteristic of SBTs of the ovary, thus supporting their classification as a relatively genetically stable tumor type. The mutant genes described herein represent novel candidates for the pathogenesis of ovarian SBT.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cystadenoma, Serous/genetics , Exome/genetics , Ovarian Neoplasms/genetics , Sequence Analysis, DNA , Cell Adhesion Molecules/genetics , Cell Cycle Proteins/genetics , F-Box Proteins/genetics , F-Box-WD Repeat-Containing Protein 7 , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mutation, Missense , Proto-Oncogene Proteins B-raf/genetics , Sequence Deletion , Ubiquitin-Protein Ligases/genetics
16.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425776

ABSTRACT

RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.

17.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398007

ABSTRACT

We report here that expression of the ribosomal protein, RPL22, is frequently reduced in human myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML); reduced RPL22 expression is associated with worse outcomes. Mice null for Rpl22 display characteristics of an MDS-like syndrome and develop leukemia at an accelerated rate. Rpl22-deficient mice also display enhanced hematopoietic stem cell (HSC) self-renewal and obstructed differentiation potential, which arises not from reduced protein synthesis but from increased expression of the Rpl22 target, ALOX12, an upstream regulator of fatty acid oxidation (FAO). The increased FAO mediated by Rpl22-deficiency also persists in leukemia cells and promotes their survival. Altogether, these findings reveal that Rpl22 insufficiency enhances the leukemia potential of HSC via non-canonical de-repression of its target, ALOX12, which enhances FAO, a process that may serve as a therapeutic vulnerability of Rpl22 low MDS and AML leukemia cells. Highlights: RPL22 insufficiency is observed in MDS/AML and is associated with reduced survivalRpl22-deficiency produces an MDS-like syndrome and facilitates leukemogenesisRpl22-deficiency does not impair global protein synthesis by HSCRpl22 controls leukemia cell survival by non-canonical regulation of lipid oxidation eTOC: Rpl22 controls the function and transformation potential of hematopoietic stem cells through effects on ALOX12 expression, a regulator of fatty acid oxidation.

18.
Int J Cancer ; 131(5): 1059-70, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22025034

ABSTRACT

Early pregnancy and multiparity are known to reduce the risk of women to develop breast cancer at menopause. Based on the knowledge that the differentiation of the breast induced by the hormones of pregnancy plays a major role in this protection, this work was performed with the purpose of identifying what differentiation-associated molecular changes persist in the breast until menopause. Core needle biopsies (CNB) obtained from the breast of 42 nulliparous (NP) and 71 parous (P) postmenopausal women were analyzed in morphology, immunocytochemistry and gene expression. Whereas in the NP breast, nuclei of epithelial cells were large and euchromatic, in the P breast they were small and hyperchromatic, showing strong methylation of histone 3 at lysine 9 and 27. Transcriptomic analysis performed using Affymetrix HG_U133 oligonucleotide arrays revealed that in CNB of the P breast, there were 267 upregulated probesets that comprised genes controlling chromatin organization, transcription regulation, splicing machinery, mRNA processing and noncoding elements including XIST. We concluded that the differentiation process induced by pregnancy is centered in chromatin remodeling and in the mRNA processing reactome, both of which emerge as important regulatory pathways. These are indicative of a safeguard step that maintains the fidelity of the transcription process, becoming the ultimate mechanism mediating the protection of the breast conferred by full-term pregnancy.


Subject(s)
Biomarkers/metabolism , Breast/cytology , Breast/metabolism , Cell Differentiation , Chromatin Assembly and Disassembly/genetics , Epithelial Cells/metabolism , Postmenopause/genetics , Aged , Female , Gene Expression Profiling , Humans , Middle Aged , Oligonucleotide Array Sequence Analysis , Parity/genetics , Pregnancy , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
19.
Mol Cancer Res ; 20(5): 699-711, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35082167

ABSTRACT

Because loss of the NF2 tumor suppressor gene results in p21-activated kinase (Pak) activation, PAK inhibitors hold promise for the treatment of NF2-deficient tumors. To test this possibility, we asked if loss of Pak2, a highly expressed group I PAK member, affects the development of malignant mesothelioma in Nf2;Cdkn2a-deficient (NC) mice and the growth properties of NC mesothelioma cells in culture. In vivo, deletion of Pak2 resulted in a markedly decreased incidence and delayed onset of both pleural and peritoneal malignant mesotheliomas in NC mice. In vitro, Pak2 deletion decreased malignant mesothelioma cell viability, migration, clonogenicity, and spheroid formation. RNA-sequencing analysis demonstrated downregulated expression of Hedgehog and Wnt pathway genes in NC;Pak2-/- mesothelioma cells versus NC;Pak2+/+ mesothelioma cells. Targeting of the Hedgehog signaling component Gli1 or its target gene Myc inhibited cell viability and spheroid formation in NC;P+/+ mesothelioma cells. Kinome profiling uncovered kinase changes indicative of EMT in NC;Pak2-/- mesothelioma cells, suggesting that Pak2-deficient malignant mesotheliomas can adapt by reprogramming their kinome in the absence of Pak activity. The identification of such compensatory pathways offers opportunities for rational combination therapies to circumvent resistance to anti-PAK drugs. IMPLICATIONS: We provide evidence supporting a role for PAK inhibitors in treating NF2-deficient tumors. NF2-deficient tumors lacking Pak2 eventually adapt by kinome reprogramming, presenting opportunities for combination therapies to bypass anti-PAK drug resistance.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Animals , Hedgehog Proteins/genetics , Humans , Mesothelioma/drug therapy , Mesothelioma/genetics , Mice , Wnt Signaling Pathway , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
20.
STAR Protoc ; 2(4): 100989, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34927097

ABSTRACT

Preparation of single-cell suspension from primary tumor tissue can provide a valuable resource for functional, genetic, proteomic, and tumor microenvironment studies. Here, we describe an effective protocol for mouse pancreatic tumor dissociation with further processing of tumor suspension for single-cell RNA sequencing analysis of cellular populations. We further provide an outline of the bioinformatics processing of the data and clustering of heterogeneous cellular populations comprising pancreatic tumors using Common Workflow Language (CWL) pipelines within user-friendly Scientific Data Analysis Platform (https://SciDAP.com). For complete details on the use and execution of this protocol, please refer to Gabitova-Cornell et al. (2020).


Subject(s)
Computational Biology/methods , Pancreatic Neoplasms , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Female , Male , Mice , Pancreas/cytology , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Software
SELECTION OF CITATIONS
SEARCH DETAIL