Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Langmuir ; 40(23): 11936-11946, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38797979

ABSTRACT

Lipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative. In the present study, hybrid lipid/copolymer structures were fabricated and examined by a gamut of techniques, including dynamic light scattering, fluorescence spectroscopy, cryogenic transmission electron microscopy, microcalorimetry, and high-resolution ultrasound spectroscopy. The biomaterials that were mixed for this purpose at different ratios were 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine and four different linear, statistical (random) amphiphilic copolymers, consisting of oligo(ethylene glycol) methyl ether methacrylate as the hydrophilic comonomer and lauryl methacrylate as the hydrophobic one. The colloidal dispersions were studied for lipid/copolymer interactions regarding their physicochemical, morphological, and biophysical behavior. Their membrane properties and interactions with serum proteins were also studied. The aforementioned techniques confirmed the hybrid nature of the systems and the location of the copolymer in the structure. More importantly, the random architecture of the copolymers, the hydrophobic-to-hydrophilic balance of the nanoplatforms, and the lipid-to-polymer ratio are highlighted as the main design-influencing factors. Elucidating the lipid/copolymer interactions would contribute to the translation of hybrid nanoparticle performance and, thus, their rational design for multiple applications, including drug delivery.


Subject(s)
Colloids , Colloids/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols/chemistry , Methacrylates/chemistry
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256239

ABSTRACT

Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson's disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-ß-CD or hydroxy-propyl-ß-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson's disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson's disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing.


Subject(s)
Indoles , Parkinson Disease , Pulmonary Surfactants , Humans , Animals , Rabbits , Surface-Active Agents , Polymers , HEK293 Cells , Parkinson Disease/drug therapy , Brain , Lipoproteins , Nasal Mucosa
3.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764255

ABSTRACT

Industrial hemp (Cannabis sativa L.), due to its bioactive compounds (terpenes and cannabinoids), has gained increasing interest in different fields, including for medical purposes. The evaluation of the safety profile of hemp essential oil (EO) and its encapsulated form (nanoemulsion, NE) is a relevant aspect for potential therapeutic applications. This study aimed to evaluate the toxicological effect of hemp EOs and NEs from cultivars Carmagnola CS and Uso 31 on three cell lines selected as models for topical and inhalant administration, by evaluating the cytotoxicity and the cytokine expression profiles. Results show that EOs and their NEs have comparable cytotoxicity, if considering the quantity of EO present in the NE. Moreover, cells treated with EOs and NEs showed, in most of the cases, lower levels of proinflammatory cytokines compared to Etoposide used as a positive control, and the basal level of inflammatory cytokines was not altered, suggesting a safety profile of hemp EOs and their NEs to support their use for medical applications.


Subject(s)
Cannabinoids , Cannabis , Oils, Volatile , Oils, Volatile/pharmacology , Cannabinoids/pharmacology , Terpenes
4.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430294

ABSTRACT

The aim of this research was to prepare novel block copolymer-surfactant hybrid nanosystems using the triblock copolymer Pluronic 188, along with surfactants of different hydrophilic to lipophilic balance (HLB ratio-which indicates the degree to which a surfactant is hydrophilic or hydrophobic) and thermotropic behavior. The surfactants used were of non-ionic nature, of which Tween 80® and Brij 58® were more hydrophilic, while Span 40® and Span 60® were more hydrophobic. Each surfactant has unique innate thermal properties and an affinity towards Pluronic 188. The nanosystems were formulated through mixing the pluronic with the surfactants at three different ratios, namely 90:10, 80:20, and 50:50, using the thin-film hydration technique and keeping the pluronic concentration constant. The physicochemical characteristics of the prepared nanosystems were evaluated using various light scattering techniques, while their thermotropic behavior was characterized via microDSC and high-resolution ultrasound spectroscopy. Microenvironmental parameters were attained through the use of fluorescence spectroscopy, while the cytotoxicity of the nanocarriers was studied in vitro. The results indicate that the combination of Pluronic 188 with the above surfactants was able to produce hybrid homogeneous nanoparticle populations of adequately small diameters. The different surfactants had a clear effect on physicochemical parameters such as the size, hydrodynamic diameter, and polydispersity index of the final formulation. The mixing of surfactants with the pluronic clearly changed its thermotropic behavior and thermal transition temperature (Tm) and highlighted the specific interactions that occurred between the different materials, as well as the effect of increasing the surfactant concentration on inherent polymer characteristics and behavior. The formulated nanosystems were found to be mostly of minimal toxicity. The obtained results demonstrate that the thin-film hydration method can be used for the formulation of pluronic-surfactant hybrid nanoparticles, which in turn exhibit favorable characteristics in terms of their possible use in drug delivery applications. This investigation can be used as a road map for the selection of an appropriate nanosystem as a novel vehicle for drug delivery.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Surface-Active Agents/chemistry , Poloxamer/chemistry , Excipients , Polysorbates , Polymers/chemistry , Lipoproteins
5.
Langmuir ; 37(33): 10166-10176, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34369787

ABSTRACT

Monoolein-based cubic and hexagonal mesophases were investigated as matrices for insulin loading, at low pH, as a function of temperature and in the presence of increasing amounts of oleic acid, as a structural stabilizer for the hexagonal phase. Synchrotron small angle X-ray diffraction, rheological measurements, and attenuated total reflection-Fourier transform infrared spectroscopy were used to study the effects of insulin loading on the lipid mesophases and of the effect of protein confinement in the 2D- and 3D-lipid matrix water channels on its stability and unfolding behavior. We found that insulin encapsulation has only little effects both on the mesophase structures and on the viscoelastic properties of lipid systems, whereas protein confinement affects the response of the secondary structure of insulin to thermal changes in a different manner according to the specific mesophase: in the cubic structure, the unfolding toward an unordered structure is favored, while the prevalence of parallel ß-sheets, and nuclei for fibril formation, is observed in hexagonal structures.


Subject(s)
Insulin , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
6.
Molecules ; 26(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806970

ABSTRACT

Most insecticides commonly used in storage facilities are synthetic, an issue that generates concerns about food safety and public health. Therefore, the development of eco-friendly pest management tools is urgently needed. In the present study, a 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsion (HvNE) was developed and evaluated for managing Tribolium confusum, T. castaneum, and Tenebrio molitor, as an eco-friendly wheat protectant. Larval and adult mortality was evaluated after 4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days, testing two HvNE concentrations (500 ppm and 1000 ppm). T. confusum and T. castaneum adults and T. molitor larvae were tolerant to both concentrations of the HvNE, reaching 13.0%, 18.7%, and 10.3% mortality, respectively, at 1000 ppm after 7 days of exposure. However, testing HvNE at 1000 ppm, the mortality of T. confusum and T. castaneum larvae and T. molitor adults 7 days post-exposure reached 92.1%, 97.4%, and 100.0%, respectively. Overall, the HvNE can be considered as an effective adulticide or larvicide, depending on the target species. Our results highlight the potential of H. voyronii essential oil for developing green nanoinsecticides to be used in real-world conditions against key stored-product pests.


Subject(s)
Insecticides , Laurales/chemistry , Oils, Volatile , Tribolium/growth & development , Triticum/parasitology , Animals , Emulsions , Insecticides/chemistry , Insecticides/pharmacology , Larva/growth & development , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
7.
Langmuir ; 36(21): 5745-5753, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32370512

ABSTRACT

Critical micelle concentration (CMC) is the main chemical-physical parameter to be determined for pure surfactants for their characterization in terms of surface activity and self-assembled aggregation. The CMC values can be calculated from different techniques (e.g., tensiometry, conductivity, fluorescence spectroscopy), able to follow the variation of a physical property with surfactant concentrations. Different mathematical approaches have been applied for the determination of CMC values from the raw experimental data. Most of them are independent of the operator, despite not all of the fitting procedures employed so far can be applied in all techniques. In this experimental work, the second derivative of the experimental data has been proposed as a unique approach to determine the CMC values from different techniques (tensiometry, conductimetry, densimetry, spectrofluorimetry, and high-resolution ultrasound spectroscopy). To this end, the CMC values of five different surfactants, specifically three anionic (sodium dodecyl sulfate, sodium deoxycolate, and N-lauroyl sarcosinate) and two nonionic, such as polyethylene glycol ester surfactants [polyethylenglicol (8) monostearate and polyethylenglicol (8) monolaurate], have been determined by this approach. The "second-derivate" approach provides a reliable determination of the CMC values among all of the techniques investigated, which were comparable to those calculated by the other operator-free routinely methods employed, such as segmental linear regression or Boltzmann regression. This study also highlighted the strengths and shortcomings of each technique over the others, providing an overview of the CMC values of commonly used anionic and nonionic surfactants in the pharmaceutical field, determined by employing different experimental approaches.

8.
Molecules ; 25(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322621

ABSTRACT

Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.


Subject(s)
Capsules/chemistry , Chemistry, Pharmaceutical/methods , Cyclodextrins/chemistry , Polymers/chemistry , Textiles , Cellulose/chemistry , Drug Carriers/chemistry , Electrochemistry , Microspheres , Nanocapsules , Nanofibers/chemistry , Nanotechnology/methods , Odorants , Perfume , Solubility
9.
AAPS PharmSciTech ; 21(7): 286, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33063151

ABSTRACT

The CoViD-19 pandemic has caused a sudden spike in demand and production of hand sanitisers. Concerns are rising regarding the quality of such products, as the safeguard of consumers is a priority worldwide. We analyse here the ethanolic content of seven off-the-shelf hand sanitiser gels (two biocides and five cosmetics) from the Italian market, using gas chromatography. The WHO recommends that products containing ethanol should have 60-95% (v/v) alcohol. Four of the tested hand gels have ethanolic contents within the recommended range, while three products (all cosmetics) contain < 60% (v/v), i.e. 52.1% (w/w), ethanol. The product with the lowest alcoholic content has 37.1% w/w ethanol. Toxic methanol is not found in any of the hand sanitisers. We show, in addition, that products with the highest ethanolic content have generally greater antibacterial activity. In conclusion, all tested products are complying with the EU regulations, as the three "substandard" products are classified as cosmetics, whose purpose is cleaning and not disinfecting. Nevertheless, if such hand cleaners were inappropriately used as hand disinfectants, they might be ineffective. Thus, consumer safety relays on awareness and ability to distinguish between biocidal and cosmetics hand gels. The obtained results might sensitise the scientific community, health agencies and ultimately consumers towards the risks of using hand sanitisers of substandard alcoholic concentration. If the wrong product is chosen by consumers, public health can be compromised by the inappropriate use of "low-dosed" cosmetic gels as disinfectants, particularly during the period of the CoViD-19 pandemic.


Subject(s)
Coronavirus Infections , Hand Sanitizers/analysis , Pandemics , Pneumonia, Viral , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , COVID-19 , Chromatography, Gas , Cosmetics , Escherichia coli/drug effects , Ethanol/analysis , Europe , Gels , Hand Disinfection , Hand Sanitizers/pharmacology , Hand Sanitizers/standards , Methanol/analysis , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
10.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38675394

ABSTRACT

The coating process for solid dosage forms is widely used in the pharmaceutical industry but presents challenges for small-scale production, needed in personalized medicine and clinical or galenic settings. This study aimed to evaluate immersion coating, a cost-effective small-scale method, for enteric-coated gelatin capsules using standard equipment. Two enteric coating polymers and different polymer concentrations were tested, along with API solubility. Results were compared with commercially available enteric capsule shells. Successful preparation of enteric coating capsules via immersion necessitates a comprehensive grasp of API and enteric polymer behavior. However, utilizing commercially available enteric capsule shells does not guarantee ease or robustness, as their efficacy hinges on the attributes of the active ingredient and excipients. Notably, coating with Eudragit S100 stands out for its superior process robustness, requiring minimal or no development time, thus representing the best option for small-scale enteric capsule production.

11.
Pharmacy (Basel) ; 12(1)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38392939

ABSTRACT

BACKGROUND: Compounding solid oral dosage forms into liquid preparations is a common practice for administering drug therapy to patients with swallowing difficulties. This is particularly relevant for those on enteral nutrition, where factors such as the administration procedure and co-administration of enteral nutrition play crucial roles in effective drug delivery. Due to the limited studies focused on this practice, the impact of co-administered nutrition remains unclear. METHODS: Pravastatin tablets were compounded into two liquid formulations and administered through three independent tubes for ten cycles. The drug amount was quantified upstream and downstream of the tubes both with and without different (fiber content) nutritional boluses. RESULTS: The compounding procedure did not lower the drug amount with respect to the original tablets. However, when the liquid formulation was pumped through the tubes, a statistically significant reduction in the pravastatin administered (between 4.6% and 11.3%) was observed. The co-administration of different nutritional boluses or the compounding procedure did not affect the general results. CONCLUSIONS: Pravastatin loss appears unavoidable when administered via the enteral tube. Although, in this case, the loss was of limited clinical relevance, it is important not to underestimate this phenomenon, especially with drugs having a narrow therapeutic index.

12.
Int J Pharm ; 661: 124388, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925239

ABSTRACT

One interesting field of research in the view of developing novel surfactants for pharmaceutical and cosmetic applications is the design of amphiphiles showing further bioactive properties in addition to those commonly displayed by surface-active compounds. We propose here the chemical synthesis, and characterization of 1-o-tolyl alkyl biguanide derivatives, having different lengths of the hydrocarbon chain (C3, C6, and C10), and showing surface active and antibacterial/disinfectant activities toward both Gram-positive and Gram-negative bacteria. Both surface active properties in terms of critical micelle concentration (CMC) and surface tension at CMC (γCMC), as well as the antimicrobial activity in terms of minimum inhibitory concentrations (MICs), were strongly dependent on the length of the hydrocarbon chain. Particularly, the C6 and C10 derivatives have a good ability to decrease surface tension (γCMC <40 mN/m) at low concentrations (CMC < 12 mM) and a satisfactory antibacterial effect (MIC values between 0.230 and 0.012 mM against S. aureus strains and between 0.910 and 0.190 against P.aeruginosa strains). Interestingly, these compounds showed a disinfectant activity at the tested concentrations that was comparable to that of the reference compound chlorhexidine digluconate. All these results support the possible use of these amphiphilic compounds as antibacterial agents and disinfectants in pharmaceutical or cosmetic formulations.

13.
J Colloid Interface Sci ; 662: 446-459, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38364470

ABSTRACT

Lipid nanoparticles own a remarkable potential in nanomedicine, only partially disclosed. While the clinical use of liposomes and cationic lipid-nucleic acid complexes is well-established, liquid lipid nanoparticles (nanoemulsions), solid lipid nanoparticles, and nanostructured lipid carriers have even greater possibilities. However, they face obstacles in being used in clinics due to a lack of understanding about the molecular mechanisms controlling their drug loading and release, interactions with the biological environment (such as the protein corona), and shelf-life stability. To create effective drug delivery carriers and successfully translate bench research to clinical settings, it is crucial to have a thorough understanding of the internal structure of lipid nanoparticles. Through synchrotron small-angle X-ray scattering experiments, we determined the spatial distribution and internal structure of the nanoparticles' lipid, surfactant, and the bound water in them. The nanoparticles themselves have a barrel-like shape that consists of coplanar lipid platelets (specifically cetyl palmitate) that are covered by loosely spaced polysorbate 80 surfactant molecules, whose polar heads retain a large amount of bound water. To reduce the interface cost of bound water with unbound water without stacking, the platelets collapse onto each other. This internal structure challenges the classical core-shell model typically used to describe solid lipid nanoparticles and could play a significant role in drug loading and release, biological fluid interaction, and nanoparticle stability, making our findings valuable for the rational design of lipid-based nanoparticles.


Subject(s)
Liposomes , Nanoparticles , X-Rays , Nanoparticles/chemistry , Drug Carriers/chemistry , Surface-Active Agents/chemistry , Lipids/chemistry , Water/chemistry , Particle Size
14.
J Mater Chem B ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804576

ABSTRACT

In this study, we designed and developed systems composed of poly(ethylene-oxide)-b-poly(ε-caprolactone) block copolymers of different molecular weights and compositions, non-ionic surfactant, and cyclodextrins. The innovation of this study lies in the combination of these diverse biomaterials to create biomimetic and bioinspired drug delivery supramolecular structures. The systems were formed by the thin-film hydration method. Extensive physicochemical and morphological characterization was conducted using differential scanning calorimetry, light scattering techniques, microcalorimetry analysis, high-resolution ultrasound spectroscopy, surface tension measurements, fluorescence spectroscopy, cryogenic transmission electron microscopy images, and in vitro cytotoxicity evaluation. These innovative hybrid nanoparticles were found to be attractive candidates as drug delivery systems with unique properties by encompassing the physicochemical and thermotropic properties of both classes of materials. Subsequently, Ropinirole hydrochloride was used as a model drug for the purpose of this study. These systems showed a high RH content (%), and in vitro diffusion experiments revealed that more than 90% of the loading dose was released under pH and temperature conditions that simulate the conditions of the nasal cavity. Promising drug release performance was observed with all tested formulations, worth further investigation to explore both ex vivo permeation through the nasal mucosa and in vivo performance in an experimental animal model.

15.
Antibiotics (Basel) ; 12(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37887201

ABSTRACT

Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.

16.
Eur J Pharm Sci ; 191: 106599, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37774955

ABSTRACT

Saquinavir mesylate (SQV) is a protease inhibitor commonly employed for the treatment of human immunodeficiency virus-1 infection. It is generally administered orally as tablets in combination with other antiviral drugs. Another promising route of administration can be represented by the vaginal one through topically applied formulations. This delivery can reduce the first-pass effect in the case of systemic drug adsorption or prevent HIV infection. We propose the formulation of a Carbopol® 974 (C974) hydrogel containing biodegradable mPEG-PL(L)GA nanoparticles (NPs) for the vaginal delivery of SQV, intended both as a prevention and a therapeutic strategy. mPEG-PL(L)GA NPs were incorporated into the C974 polymeric matrix, leading to a reduction of the hydrogel consistency dependent on NPs and C974 concentrations. Despite the moderate drug loading into NPs, the presence of the NPs had an impact on the in vitro release of the drug from the hydrogel at pH 5.5 using immersion cells. A higher amount of the drug was released, probably due to the effect of NPs in promoting the incorporation of the drug into the hydrogel at a high SQV dose. These findings can be useful for the development of topically applied hydrogels for SQV delivery, possibly having improved in vivo therapeutic outcomes.


Subject(s)
HIV Infections , Nanoparticles , Female , Humans , Pregnancy , Saquinavir , Hydrogels , HIV Infections/drug therapy , Delivery, Obstetric
17.
Foods ; 12(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37761209

ABSTRACT

The development of functional foods in the dairy sector represents a flourishing field of technological research. In this study, an Italian fresh cheese as "giuncata" was enriched with inulin, a dietary fiber, with the aim of developing a product with improved nutritional properties in terms of prebiotic action on intestinal microbiota. An inulin concentration of ~4% w/w was determined in the fresh cheese after the fortification process, enabling the claim of being a "source of dietary fiber" (inulin > 3 g/100 g) according to the European regulation. The addition of inulin has no effect on the pH of cheese and does not relevantly influence its color as well as the total fat content (fat reduction ~0.61%) in comparison to the control. Mechanical properties of the cheese were also not markedly affected as evidenced from rheological and tensile testing analyses. Indeed, the incorporation of inulin in "giuncata" only exerts a slight "softening effect" resulting in a slightly lower consistency and mechanical resistance in comparison to the control. Overall, this study demonstrates the feasibility of producing a fiber-enriched dairy functional food from a large consumed fresh and soft cheese as "giuncata".

18.
Int J Pharm ; 630: 122440, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36436746

ABSTRACT

The abilities of sub-cellular targeting and stimuli-responsiveness are critical challenges in pharmaceutical nanotechnology. In the present study, glyceryl monooleate (GMO)-based non-lamellar lyotropic liquid crystalline nanoparticles were stabilized by the poly(2-(dimethylamino)ethyl methacrylate)-b-poly(lauryl methacrylate) block copolymer carrying tri-phenyl-phosphine cations (TPP-QPDMAEMA-b-PLMA), either used alone or in combination with other polymers as co-stabilizers. The systems were designed to perform simultaneously sub-cellular targeting, stimuli-responsiveness and to exhibit stealthiness. The physicochemical characteristics and fractal dimensions of the resultant nanosystems were obtained from light scattering techniques, while their micropolarity and microfluidity from fluorescence spectroscopy. Their morphology was assessed by cryo-TEM, while their thermal behavior by microcalorimetry and high-resolution ultrasound spectroscopy. The analyzed properties, including the responsiveness to pH and temperature, were found to be dependent on the combination of the polymeric stabilizers. The subcellular localization was monitored by confocal microscopy, revealing targeting to lysosomes. Subsequently, resveratrol was loaded into the nanosystems, the entrapment efficiency was investigated and in vitro release studies were carried out at different conditions, in which a stimuli-triggered drug release profile was achieved. In conclusion, the proposed multi-functional nanosystems can be considered as potentially stealth, stimuli-responsive drug delivery nanocarriers, with targeting ability to lysosomes and presenting a stimuli-triggered drug release profile.


Subject(s)
Liquid Crystals , Nanoparticles , Drug Liberation , Nanoparticles/chemistry , Liquid Crystals/chemistry , Drug Delivery Systems/methods , Polymers/chemistry , Lysosomes , Drug Carriers/chemistry
19.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-37259370

ABSTRACT

The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure-property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications.

20.
Biomedicines ; 11(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760935

ABSTRACT

Alopecia is a pathological and multifactorial condition characterised by an altered hair growth cycle and ascribed to different pathogenic causes. Cell energetic imbalances in hair follicles occurring in this disorder could lead to the production of some "metabolic wastes", including squalene and lactic acid, which could be involved in the clinically observed sheath damage. The aim of this work was the extraction and analytical quantification of squalene and lactic acid from hair bulbs of subjects with clinical alopecia in comparison with controls, using HPLC-DAD and HPLC-MS techniques. The analytical quantification was performed after a preliminary observation through a polarised optical microscope to assess sheath damage and morphological alterations in the cases group. A significantly larger amount of squalene was quantified only in subjects affected by alopecia (n = 31) and with evident damage to hair sheaths. For lactic acid, no statistically significant differences were found between cases (n = 21) and controls (n = 21) under the experimental conditions used. Therefore, the obtained results suggest that squalene can represent a metabolic and a pathogenic marker for some alopecia conditions.

SELECTION OF CITATIONS
SEARCH DETAIL