Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Mol Cell Cardiol ; 126: 13-22, 2019 01.
Article in English | MEDLINE | ID: mdl-30445017

ABSTRACT

AIMS: Circulating immune cells have a significant impact on progression and outcome of heart failure. Long non-coding RNAs (lncRNAs) comprise novel epigenetic regulators which control cardiovascular diseases and inflammatory disorders. We aimed to identify lncRNAs regulated in circulating immune cells of the blood of heart failure patients. METHODS AND RESULTS: Next-generation sequencing revealed 110 potentially non-coding RNA transcripts differentially expressed in peripheral blood mononuclear cells of heart failure patients with reduced ejection fraction. The up-regulated lncRNA Heat2 was further functionally characterized. Heat2 expression was detected in whole blood, PBMNCs, eosinophil and basophil granulocytes. Heat2 regulates cell division, invasion, transmigration and immune cell adhesion on endothelial cells. CONCLUSION: Heat2 is an immune cell enriched lncRNA that is elevated in the blood of heart failure patients and controls cellular functions.


Subject(s)
Gene Expression Regulation , Heart Failure/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Case-Control Studies , Cohort Studies , Eosinophils/metabolism , Female , Heart Failure/blood , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Sci Rep ; 8(1): 8087, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29799020

ABSTRACT

The use of cardiac troponins (cTn) is the gold standard for diagnosing myocardial infarction. Independent of myocardial infarction (MI), however, sex, age and kidney function affect cTn levels. Here we developed a method to adjust cTnI levels for age, sex, and renal function, maintaining a unified cut-off value such as the 99th percentile. A total of 4587 individuals enrolled in a prospective longitudinal study were used to develop a model for adjustment of cTn. cTnI levels correlated with age and estimated glomerular filtration rate (eGFR) in males/females with rage = 0.436/0.518 and with reGFR = -0.142/-0.207. For adjustment, these variables served as covariates in a linear regression model with cTnI as dependent variable. This adjustment model was then applied to a real-world cohort of 1789 patients with suspected acute MI (AMI) (N = 407). Adjusting cTnI showed no relevant loss of diagnostic information, as evidenced by comparable areas under the receiver operator characteristic curves, to identify AMI in males and females for adjusted and unadjusted cTnI. In specific patients groups such as in elderly females, adjusting cTnI improved specificity for AMI compared with unadjusted cTnI. Specificity was also improved in patients with renal dysfunction by using the adjusted cTnI values. Thus, the adjustments improved the diagnostic ability of cTnI to identify AMI in elderly patients and in patients with renal dysfunction. Interpretation of cTnI values in complex emergency cases is facilitated by our method, which maintains a single diagnostic cut-off value in all patients.


Subject(s)
Biomarkers/blood , Chest Pain/diagnosis , Diagnostic Techniques, Cardiovascular , Myocardial Infarction/diagnosis , Troponin I/blood , Adult , Age Factors , Aged , Biomarkers/analysis , Chest Pain/blood , Chest Pain/epidemiology , Chest Pain/physiopathology , Cohort Studies , Diagnostic Techniques, Cardiovascular/standards , Female , Glomerular Filtration Rate , Humans , Kidney Function Tests , Male , Middle Aged , Myocardial Infarction/blood , Myocardial Infarction/epidemiology , Myocardial Infarction/physiopathology , Predictive Value of Tests , Sensitivity and Specificity , Sex Factors , Troponin I/analysis
SELECTION OF CITATIONS
SEARCH DETAIL