Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Phys Rev Lett ; 125(2): 027202, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32701352

ABSTRACT

Noncollinear magnetic order arises for various reasons in several magnetic systems and exhibits interesting spin dynamics. Despite its ubiquitous presence, little is known of how magnons, otherwise stable quasiparticles, decay in these systems, particularly in metallic magnets. Using inelastic neutron scattering, we examine the magnetic excitation spectra in a metallic noncollinear antiferromagnet CrB_{2}, in which Cr atoms form a triangular lattice and display incommensurate magnetic order. Our data show intrinsic magnon damping and continuumlike excitations that cannot be explained by linear spin wave theory. The intrinsic magnon linewidth Γ(q,E_{q}) shows very unusual momentum dependence, which our analysis shows to originate from the combination of two-magnon decay and the Stoner continuum. By comparing the theoretical predictions with the experiments, we identify where in the momentum and energy space one of the two factors becomes more dominant. Our work constitutes a rare comprehensive study of the spin dynamics in metallic noncollinear antiferromagnets. It reveals, for the first time, definite experimental evidence of the higher-order effects in metallic antiferromagnets.

2.
Phys Rev Lett ; 122(11): 117204, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30951336

ABSTRACT

We use inelastic neutron scattering to study energy and wave vector dependence of spin fluctuations in SrCo_{2}As_{2}, derived from SrFe_{2-x}Co_{x}As_{2} iron pnictide superconductors. Our data reveal the coexistence of antiferromagnetic (AF) and ferromagnetic (FM) spin fluctuations at wave vectors Q_{AF}=(1,0) and Q_{FM}=(0,0)/(2,0), respectively. By comparing neutron scattering results with those of dynamic mean field theory calculation and angle-resolved photoemission spectroscopy experiments, we conclude that both AF and FM spin fluctuations in SrCo_{2}As_{2} are closely associated with a flatband of the e_{g} orbitals near the Fermi level, different from the t_{2g} orbitals in superconducting SrFe_{2-x}Co_{x}As_{2}. Therefore, Co substitution in SrFe_{2-x}Co_{x}As_{2} induces a t_{2g} to e_{g} orbital switching, and is responsible for FM spin fluctuations detrimental to the singlet pairing superconductivity.

3.
Phys Rev Lett ; 113(4): 047202, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105649

ABSTRACT

Neutron inelastic scattering has been used to probe the spin dynamics of the quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu(2)V(2)O(7). Well-defined spin waves are observed at all energies and wave vectors, allowing us to determine the parameters of the Hamiltonian of the system. The data are found to be in excellent overall agreement with a minimal model that includes a nearest-neighbor Heisenberg exchange J = 8.22(2) meV and a Dzyaloshinskii-Moriya interaction (DMI) D = 1.5(1) meV. The large DMI term revealed by our study is broadly consistent with the model originally used to explain the magnon Hall effect in this compound [Onose et al., Science 329, 297 (2010) and Ideue et al., Phys. Rev. B 85, 134411 (2012)]. However, our ratio of D/J = 0.18(1) is roughly half of their value, and is much larger than those found in other theoretical studies [Xiang et al., Phys. Rev. B 83, 174402 (2011) and Mook et al., Phys. Rev. B 89,134409 (2014)].

4.
Phys Rev Lett ; 111(25): 257202, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24483753

ABSTRACT

The breakdown of magnons, the quasiparticles of magnetic systems, has rarely been seen. By using an inelastic neutron scattering technique, we report the observation of spontaneous magnon decay in multiferroic LuMnO3, a simple two dimensional Heisenberg triangular lattice antiferromagnet, with large spin S=2. The origin of this rare phenomenon lies in the nonvanishing cubic interaction between magnons in the spin Hamiltonian arising from the noncollinear 120° spin structure. We observed all three key features of the nonlinear effects as theoretically predicted: a rotonlike minimum, a flat mode, and a linewidth broadening, in our inelastic neutron scattering measurements of single crystal LuMnO3. Our results show that quasiparticles in a system hitherto thought of as "classical" can indeed break down.

5.
Phys Rev Lett ; 109(23): 237202, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368255

ABSTRACT

We have measured the spin-wave spectrum of the half-doped bilayer manganite Pr(Ca,Sr)(2)Mn(2)O(7) in its spin, charge, and orbital ordered phase. The measurements, which extend throughout the Brillouin zone and cover the entire one-magnon spectrum, are compared critically with spin-wave calculations for different models of the electronic ground state. The data are described very well by the Goodenough model, which has weakly interacting ferromagnetic zig-zag chains in the CE-type arrangement. A model that allows ferromagnetic dimers to form within the zigzags is inconsistent with the data. The analysis conclusively rules out the strongly bound dimer (Zener polaron) model.

6.
Phys Rev Lett ; 106(5): 057004, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405424

ABSTRACT

We use neutron scattering to show that spin waves in the iron chalcogenide Fe(1.05)Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe(2)As(2). By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

7.
Nat Commun ; 12(1): 2306, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33863905

ABSTRACT

Novel effects induced by nonmagnetic impurities in frustrated magnets and quantum spin liquid represent a highly nontrivial and interesting problem. A theoretical proposal of extended modulated spin structures induced by doping of such magnets, distinct from the well-known skyrmions has attracted significant interest. Here, we demonstrate that nonmagnetic impurities can produce such extended spin structures in h-YMnO3, a triangular antiferromagnet with noncollinear magnetic order. Using inelastic neutron scattering (INS), we measured the full dynamical structure factor in Al-doped h-YMnO3 and confirmed the presence of magnon damping with a clear momentum dependence. Our theoretical calculations can reproduce the key features of the INS data, supporting the formation of the proposed spin textures. As such, our study provides the first experimental confirmation of the impurity-induced spin textures. It offers new insights and understanding of the impurity effects in a broad class of noncollinear magnetic systems.

8.
Phys Rev Lett ; 105(24): 247001, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21231553

ABSTRACT

Inelastic neutron scattering is used to investigate the collective magnetic excitations of the high-temperature superconductor-parent antiferromagnet La2CuO4. We find that while the lower energy excitations are well described by spin-wave theory, including one- and two-magnon scattering processes, the high-energy spin waves are strongly damped near the (1/2, 0) position in reciprocal space and merge into a momentum dependent continuum. This anomalous damping indicates the decay of spin waves into other excitations, possibly unbound spinon pairs.

9.
Nature ; 429(6991): 531-4, 2004 Jun 03.
Article in English | MEDLINE | ID: mdl-15175744

ABSTRACT

In conventional superconductors, lattice vibrations (phonons) mediate the attraction between electrons that is responsible for superconductivity. The high transition temperatures (high-T(c)) of the copper oxide superconductors has led to collective spin excitations being proposed as the mediating excitations in these materials. The mediating excitations must be strongly coupled to the conduction electrons, have energy greater than the pairing energy, and be present at T(c). The most obvious feature in the magnetic excitations of high-T(c) superconductors such as YBa2Cu3O6+x is the so-called 'resonance'. Although the resonance may be strongly coupled to the superconductivity, it is unlikely to be the main cause, because it has not been found in the La2-x(Ba,Sr)(x)CuO4 family and is not universally present in Bi2Sr2CaCu2O8+delta (ref. 9). Here we use inelastic neutron scattering to characterize possible mediating excitations at higher energies in YBa2Cu3O6.6. We observe a square-shaped continuum of excitations peaked at incommensurate positions. These excitations have energies greater than the superconducting pairing energy, are present at T(c), and have spectral weight far exceeding that of the 'resonance'. The discovery of similar excitations in La2-xBa(x)CuO4 (ref. 10) suggests that they are a general property of the copper oxides, and a candidate for mediating the electron pairing.

10.
Nature ; 429(6991): 534-8, 2004 Jun 03.
Article in English | MEDLINE | ID: mdl-15175745

ABSTRACT

In the copper oxide parent compounds of the high-transition-temperature superconductors the valence electrons are localized--one per copper site--by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile 'holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to describing the coexistence, the holes are believed to self-organize into 'stripes' that alternate with antiferromagnetic (insulating) regions within copper oxide planes, which would necessitate an unconventional mechanism of superconductivity. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping are incompatible with the naive expectations for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity.

11.
J Phys Condens Matter ; 32(37): 374013, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32289761

ABSTRACT

The compound La2-2x Sr1+2x Mn2O7, x = 0.30-0.40, consists of bilayers of ferromagnetic metallic MnO2 sheets that are separated by insulating layers. The materials show colossal magnetoresistance-a reduction in resistivity of up to two orders of magnitude in a field of 7 T-at their three-dimensional ordering temperatures, T C = 90-126 K, and are the layered analogues of the widely studied pseudo-cubic perovskite manganites, R1-x A x MnO3 (R = rare earth, A = Ca, Sr, Ba, Pb). Two distinct short-range orderings-antiferromagnetic fluctuations and correlated polarons, which are related to the magnetic and the lattice degrees of freedom respectively-have previously been discovered in La2-2x Sr1+2x Mn2O7, x = 0.40, and have each been qualitatively connected to the resistivity. Here, in a comprehensive study as a function of both temperature and magnetic field for the different hole-concentrations per Mn site of x = 0.30 and 0.35, we show that antiferromagnetic fluctuations also appear at temperatures just above T C, and that the intensities of both the antiferromagnetic fluctuations and polaron correlations closely track the resistivity. In particular, for x = 0.35 we show that there is a simple scaling relation between the intensities of the antiferromagnetic fluctuations and the in-plane resistivity that applies for the temperatures and magnetic fields used in the experiments. The results show that antiferromagnetic fluctuations are a common feature of La2-2x Sr1+2x Mn2O7 with ferromagnetic bilayers, and that there is a close connection between the antiferromagnetic fluctuations and polarons in these materials.

12.
J Phys Condens Matter ; 32(37): 374007, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32050188

ABSTRACT

It is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the [Formula: see text] point the pole in the one-magnon response exhibits a downward dispersion, is heavily damped and attenuated, giving way to an isotropic continuum of excitations extending to high energies. The origin of the anomaly and the presence of the continuum are of current theoretical interest, with suggestions focused around the idea that the latter evidences the existence of spinons in a two-dimensional system. Here we present the results of neutron inelastic scattering experiments and Quantum Monte Carlo calculations on the metallo-organic compound Cu(DCOO)[Formula: see text]D2O (CFTD), an excellent physical realisation of the 2DQHAFSL, designed to investigate how the anomaly at [Formula: see text] evolves up to finite temperatures [Formula: see text]. Our data reveal that on warming the anomaly survives the loss of long-range, three-dimensional order, and that it is thus a robust feature of the two-dimensional system. With further increase of temperature the zone-boundary response gradually softens and broadens, washing out the [Formula: see text] anomaly. This is confirmed by a comparison of our data with the results of finite-temperature Quantum Monte Carlo simulations where the two are found to be in good accord. In the vicinity of the antiferromagnetic zone centre, there was no significant softening of the magnetic excitations over the range of temperatures investigated.

13.
Sci Rep ; 10(1): 18012, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33093480

ABSTRACT

We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120-150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see text] that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni-O bond stretching phonon dispersion, a softening at the propagation vector for a checkerboard modulation can be observed. We were able to simulate the magnetic excitation spectra using a model that includes two essential ingredients, namely checkerboard charge disproportionation and nano phase separation. The results thus suggest that charge disproportionation is preferred instead of a Jahn-Teller distortion even for this layered [Formula: see text] system.

14.
Rev Sci Instrum ; 90(3): 035110, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30927771

ABSTRACT

The MAPS direct geometry time-of-flight chopper spectrometer at the ISIS pulsed neutron and muon source has been in operation since 1999, and its novel use of a large array of position-sensitive neutron detectors paved the way for a later generations of chopper spectrometers around the world. Almost two decades of experience of user operations on MAPS, together with lessons learned from the operation of new generation instruments, led to a decision to perform three parallel upgrades to the instrument. These were to replace the primary beamline collimation with supermirror neutron guides, to install a disk chopper, and to modify the geometry of the poisoning in the water moderator viewed by MAPS. Together, these upgrades were expected to increase the neutron flux substantially, to allow more flexible use of repetition rate multiplication and to reduce some sources of background. Here, we report the details of these upgrades and compare the performance of the instrument before and after their installation as well as to Monte Carlo simulations. These illustrate that the instrument is performing in line with, and in some respects in excess of, expectations. It is anticipated that the improvement in performance will have a significant impact on the capabilities of the instrument. A few examples of scientific commissioning are presented to illustrate some of the possibilities.

15.
Rev Sci Instrum ; 78(4): 043901, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17477675

ABSTRACT

We report on an adaptive binning approach designed for data visualization within scientific disciplines where counting statistics are expected to follow Poisson distributions. We envisage a wide range of applications stemming from astrophysics to the condensed matter sciences. Our main focus of interest concerns, however, neutron spectroscopy data from single-crystal samples where signals span a four-dimensional space defined by three spatial coordinates plus time. This makes widely used equal-width binning schemes inadequate since physically relevant information is often concentrated within rather small regions of such a space. Our aim is thus to generate optimally binned data sets from one-dimensional to three-dimensional volumes to provide the experimentalist with enhanced ability to carry out searches within a four-dimensional space. Several binning algorithms are then scrutinized against experimental as well as simulated data.


Subject(s)
Crystallography , Algorithms , Crystallography/instrumentation , Crystallography/methods , Image Processing, Computer-Assisted , Neutrons , Spectrum Analysis/instrumentation , Spectrum Analysis/methods
16.
Nat Commun ; 7: 13146, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27759004

ABSTRACT

Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon-phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon-phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it.

17.
Nat Phys ; 11(1): 62-68, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25729400

ABSTRACT

Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). We use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.

18.
J Phys Condens Matter ; 25(42): 425701, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24065357

ABSTRACT

We report neutron inelastic scattering measurements on polycrystalline LaFePO and Sr2ScO3FeP, two members of the iron phosphide families of superconductors. No evidence is found for any magnetic fluctuations in the spectrum of either material in the energy and wavevector ranges probed. Special attention is paid to the wavevector at which spin-density-wave-like fluctuations are seen in other iron-based superconductors. We estimate that the magnetic signal, if present, is at least a factor of four (Sr2ScO3FeP) or seven (LaFePO) smaller than in the related iron arsenide and chalcogenide superconductors. These results suggest that magnetic fluctuations are not as influential on the electronic properties of the iron phosphide systems as they are in other iron-based superconductors.

19.
Nat Commun ; 4: 2874, 2013.
Article in English | MEDLINE | ID: mdl-24301219

ABSTRACT

High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe2As2 parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies. In addition, our absolute spin susceptibility measurements for the optimally hole-doped iron pnictide reveal that the change in magnetic exchange energy below and above T(c) can account for the superconducting condensation energy. These results suggest that high-T(c) superconductivity in iron pnictides is associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons.

20.
Phys Rev Lett ; 102(16): 167002, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518745

ABSTRACT

We use inelastic neutron scattering to measure the magnetic excitations in underdoped La2-xSrxCuO4 (x=0.085, T_{c}=22 K) for large energy (5

SELECTION OF CITATIONS
SEARCH DETAIL