Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Regul Toxicol Pharmacol ; 150: 105648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772524

ABSTRACT

Inhalation is a critical route through which substances can exert adverse effects in humans; therefore, it is important to characterize the potential effects that inhaled substances may have on the human respiratory tract by using fit for purpose, reliable, and human relevant testing tools. In regulatory toxicology testing, rats have primarily been used to assess the effects of inhaled substances as they-being mammals-share similarities in structure and function of the respiratory tract with humans. However, questions about inter-species differences impacting the predictability of human effects have surfaced. Disparities in macroscopic anatomy, microscopic anatomy, or physiology, such as breathing mode (e.g., nose-only versus oronasal breathing), airway structure (e.g., complexity of the nasal turbinates), cell types and location within the respiratory tract, and local metabolism may impact inhalation toxicity testing results. This review shows that these key differences describe uncertainty in the use of rat data to predict human effects and supports an opportunity to harness modern toxicology tools and a detailed understanding of the human respiratory tract to develop testing approaches grounded in human biology. Ultimately, as the regulatory purpose is protecting human health, there is a need for testing approaches based on human biology and mechanisms of toxicity.


Subject(s)
Respiratory System , Species Specificity , Toxicity Tests , Animals , Humans , Respiratory System/drug effects , Respiratory System/anatomy & histology , Rats , Toxicity Tests/methods , Inhalation Exposure/adverse effects , Risk Assessment
2.
Environ Monit Assess ; 186(8): 4841-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24729181

ABSTRACT

In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103Ā Āµg/g and from 68 to 164Ā ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72Ā ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469Ā ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Urbanization
3.
Environ Sci Technol ; 47(3): 1306-12, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23305514

ABSTRACT

Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on relatively uninformative and potentially insensitive toxicological end points. Gene expression analysis may provide needed sensitivity and specificity aiding in the identification of primary toxicants. The current work aims to determine the added benefit of integrating gene expression end points into the TIE process. A cDNA library and a custom microarray were constructed for the marine amphipod Ampelisca abdita. Phase 1 TIEs were conducted using 10% and 40% dilutions of acutely toxic sediment. Gene expression was monitored in survivors and controls. An expression-based classifier was developed and evaluated against control organisms, organisms exposed to low or medium toxicity diluted sediment, and chemically selective manipulations of highly toxic sediment. The expression-based classifier correctly identified organisms exposed to toxic sediment even when little mortality was observed, suggesting enhanced sensitivity of the TIE process. The ability of the expression-based end point to correctly identify toxic sediment was lost concomitantly with acute toxicity when organic contaminants were removed. Taken together, this suggests that gene expression enhances the performance of the TIE process.


Subject(s)
Amphipoda/genetics , Aquatic Organisms/genetics , Endpoint Determination , Genome/genetics , Toxicity Tests , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Aquatic Organisms/drug effects , Biomarkers/metabolism , Gene Expression Regulation/drug effects , Geologic Sediments/chemistry , Rhode Island , Rivers/chemistry
4.
Front Toxicol ; 4: 964553, 2022.
Article in English | MEDLINE | ID: mdl-36119357

ABSTRACT

New approach methodologies (NAMs) are increasingly being used for regulatory decision making by agencies worldwide because of their potential to reliably and efficiently produce information that is fit for purpose while reducing animal use. This article summarizes the ability to use NAMs for the assessment of human health effects of industrial chemicals and pesticides within the United States, Canada, and European Union regulatory frameworks. While all regulations include some flexibility to allow for the use of NAMs, the implementation of this flexibility varies across product type and regulatory scheme. This article provides an overview of various agencies' guidelines and strategic plans on the use of NAMs, and specific examples of the successful application of NAMs to meet regulatory requirements. It also summarizes intra- and inter-agency collaborations that strengthen scientific, regulatory, and public confidence in NAMs, thereby fostering their global use as reliable and relevant tools for toxicological evaluations. Ultimately, understanding the current regulatory landscape helps inform the scientific community on the steps needed to further advance timely uptake of approaches that best protect human health and the environment.

5.
Environ Toxicol Chem ; 29(3): 742-50, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20821502

ABSTRACT

Contaminated sediments are commonly found in urbanized harbors. At sufficiently high contaminant levels, sediments can cause toxicity to aquatic organisms and impair benthic communities. As a result, remediation is necessary and diagnosing the cause of sediment toxicity becomes imperative. In the present study, six sediments from a highly industrialized area in Patrick Bayou (TX, USA) were subjected to initial toxicity testing with the mysid, Americamysis bahia, and the amphipod, Ampelisca abdita. All sediments were toxic to the amphipods, while sites PB4A, PB6A, and PB9 were the only sites toxic to mysids. Due to its toxicity to both test organisms, site PB6A was chosen for a marine whole sediment phase I toxicity identification evaluation (TIE). Results of the TIE found toxicity to amphipods was primarily due to nonionic organic contaminants (NOCs), rather than cationic metals or ammonia. Causes of mysid toxicity in the TIE were less clear. An assessment of metal bioavailability using equilibrium partitioning (EqP) approaches supported the results of the TIE that cationic metals were not responsible for observed toxicity in PB6A for either organism. Toxic units (TU) calculated on measured concentrations of NOCs in the sediment yielded a total TU of 1.25, indicating these contaminants are contributing to the observed sediment toxicity. Using a combination of these TIE and EqP assessment tools, this investigation was capable of identifying NOCs as the likely class of contaminants causing acute toxicity to amphipods exposed to Patrick Bayou sediment. The cause of mysid toxicity was not definitively determined, but unmeasured NOCs are suspected.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Amphipoda/metabolism , Animals , Biological Availability , Metals/pharmacokinetics , Organic Chemicals/toxicity , Texas , Water Pollutants, Chemical/analysis
6.
Environ Toxicol Chem ; 28(1): 26-35, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18717615

ABSTRACT

Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.


Subject(s)
Carbon , Coal , Geologic Sediments/chemistry , Particulate Matter , Polycyclic Compounds/toxicity , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Biological Availability , Coal Ash , Metals/toxicity , Polycyclic Compounds/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics
7.
Environ Toxicol Chem ; 28(4): 749-58, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19006439

ABSTRACT

Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to marine organisms. Among the wide range of contaminants, nonionic organic contaminants (NOCs) are a primary cause of toxicity in marine sediments. Toxicity identification evaluations (TIEs) are used to characterize and identify chemicals causing toxicity in effluents, interstitial waters, and whole sediments using whole-organism endpoints. Phase I whole-sediment TIE methods for NOCs exist, but the development of phase II TIE methods for NOCs is a current research challenge. In the present study, the use of reverse polyethylene samplers (RePES) for phase II methods is examined. Various RePES designs were evaluated in an experimental design study with NOC chemical solutions. Based on equilibration time and proximity of measured NOC water concentrations in the reconstituted system to theoretical concentrations, a nontriolein design with loading of chemical solutions on the inside of the polyethylene tubing was chosen as most effective. A partitioning study demonstrated NOCs partitioned between the RePES and water as well as between the water and air, as expected using this nontriolein RePES design. Finally, a sediment toxicity study comparing the nontriolein RePES to contaminant-spiked sediments was conducted. The nontriolein RePES design was capable of successfully recreating the toxicity and water concentrations observed with the intact sediments.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Polyethylene/toxicity , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Geologic Sediments/analysis , Polyethylene/analysis , Time Factors , Water Pollutants, Chemical/analysis
8.
Environ Toxicol Chem ; 37(10): 2677-2681, 2018 10.
Article in English | MEDLINE | ID: mdl-30024047

ABSTRACT

It is well known that copper (Cu) is toxic to marine organisms. We measured and compared the acute toxicity of several forms of Cu (including nanoCu) amended into a marine sediment with mysids and amphipods. For all the forms of Cu tested, toxicity, measured as the median lethal concentration, ranged from 708 to > 2400 mg Cu/kg (dry sediment) for mysids and 258 to 1070 mg Cu/kg (dry sediment) for amphipods. Environ Toxicol Chem 2018;37:2677-2681. Ā© 2018 SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Copper/toxicity , Ecosystem , Geologic Sediments/chemistry , Nanoparticles/toxicity , Toxicity Tests, Acute , Amphipoda/drug effects , Animals , Crustacea/drug effects
9.
Environ Toxicol Chem ; 37(7): 1969-1979, 2018 07.
Article in English | MEDLINE | ID: mdl-29575127

ABSTRACT

One application of nanocopper is as a wood-preserving pesticide in pressure-treated lumber. Recent research has shown that pressure-treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and marine conditions. The form of copper released (i.e., ionic, nanocopper [1-100 nm in size]) is not fully understood but will affect the bioavailability and toxicity of the metal. In the present study, multiple lines of evidence, including size fractionation, ion-selective electrode electrochemistry, comparative toxicity, and copper speciation were used to determine the form of copper released from lumber blocks and sawdust. The results of all lines of evidence supported the hypothesis that ionic copper was released from MCA lumber and sawdust, with little evidence that nanocopper was released. For example, copper concentrations in size fractionations of lumber block aqueous leachates including unfiltered, 0.1 Āµm, and 3 kDa were not significantly different, suggesting that the form of copper released was in the size range operationally defined as dissolved. These results correlated with the ion-selective electrode data which detects only ionic copper. In addition, comparative toxicity testing resulted in a narrow range of median lethal concentrations (221-257 Āµg/L) for MCA lumber blocks and CuSO4 . We conclude that ionic copper was released from the nanocopper pressure-treated lumber under estuarine and marine conditions. Environ Toxicol Chem 2018;37:1969-1979. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Copper/analysis , Nanoparticles/analysis , Seawater/chemistry , Wood/chemistry , Biological Availability , Ion-Selective Electrodes , Toxicity Tests , Water Pollutants, Chemical/analysis , X-Ray Absorption Spectroscopy
10.
Environ Toxicol Chem ; 26(1): 61-7, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17269460

ABSTRACT

Marine sediments accumulate a variety of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity identification evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole-sediment TIE methods are not available for anionic metals like arsenic and chromium. In the present paper, we describe two new anion-exchange resins used in the development of whole-sediment TIE methods for arsenic and chromium. Resins were shown to reduce whole-sediment toxicity and overlying water concentrations of the anionic metals. Sediment toxicity, expressed as the median lethal concentration, was reduced by a factor of two to a factor of nearly six between amended sediment treatments containing resin and those without resin. Aqueous concentrations of arsenic and chromium in the toxicity exposures decreased to less than the detection limits or to concentrations much lower than those measured in treatments without resin. Interference studies indicated that the anion-exchange resins had no significant effect on concentrations of the representative pesticide endosulfan and minimal effects on concentrations of ammonia. However, the anion-exchange resins did significantly reduce the concentrations of a selection of cationic metals (Cd, Cu, Ni, Pb, and Zn). These data demonstrate the utility of anion-exchange resins for determining the contribution of arsenic and chromium to whole-sediment toxicity. The present results also indicate the importance of using TIE methods in a formal TIE structure to ensure that results are not misinterpreted. These methods should be useful in the performance of marine whole-sediment TIEs.


Subject(s)
Arsenic/toxicity , Chromium/toxicity , Environmental Pollutants/toxicity , Geologic Sediments/chemistry , Anion Exchange Resins , Artifacts
11.
Integr Environ Assess Manag ; 13(4): 675-685, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27567128

ABSTRACT

The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associated with removal of the Pawtuxet River dam. Integr Environ Assess Manag 2017;13:675-685. Published 2016. This article is a US Government work and is in the public domain in the USA.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Power Plants , Rivers/chemistry , Water Pollutants, Chemical/analysis , Rhode Island
12.
Environ Toxicol Chem ; 25(8): 2028-37, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16916021

ABSTRACT

Coal fly ash has a very high sorption capacity for a variety of anthropogenic contaminants and has been used to cleanse wastewater of pollutants for approximately 40 years. Like other black carbons, the planar structure of the residual carbon in fly ash results in elevated affinities for planar organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and some polychlorinated biphenyls (PCBs). The present study was performed to understand better the mechanisms affecting the strong interaction between planar contaminants and coal fly ash. The removal of 10 PCBs and 10 PAHs by several fly ashes and other sorbents was evaluated under different experimental conditions to highlight the intermolecular forces influencing adsorption. Varying fly ash concentration and solvent system composition indicated that dispersive interactions were most prevalent. For the PCBs, empirical results also were compared to molecular modeling estimates of the energy necessary for the PCB molecule to assume a planar conformation (PCe). The PCe levels ranged from 8 to 25 kcal/mol, depending on the degree of ortho-substituted chlorination of the PCB. A significant correlation between PCe and PCB removal from solution was observed for the fly ashes and activated carbon, whereas the nonplanar sorbent octadecyl (C18) indicated no relationship. These findings demonstrate the strong interaction between black carbon fly ash and planar organic contaminants. Furthermore, as exemplified by the PCBs, these results show how this interaction is a function of a contaminant's ability to assume a planar conformation.


Subject(s)
Carbon , Coal , Particulate Matter , Coal Ash , Magnetic Resonance Spectroscopy , Models, Molecular
13.
Environ Toxicol Chem ; 24(7): 1609-17, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16050576

ABSTRACT

Oxygenated nonpolar organic contaminants (NOCs) are underrepresented in studies of the partitioning and bioavailability of NOCs, including nonylphenol. In this investigation, we evaluated the toxicity, partitioning, and bioavailability of nonylphenol as affected by different forms of organic carbon. Along with organic carbon content, the role of organic carbon polarity was assessed. Toxicity of nonylphenol to a mysid and amphipod was comparable to results reported in the literature for marine organisms with median lethal concentrations (LC50s) of 82.3 and 236 microg/L, respectively. The presence of the different forms of organic carbon in every instance altered, often statistically significantly, the toxicity and bioavailability of the nonylphenol and increased the LC50 by approximately a factor of two. Partition coefficients (KPs) for nonylphenol ranged from 21.3 for cellulose to 9,770 for humic acid; log organic carbon-normalized partition coefficients (KOCs) ranged from 1.71 for cellulose to 4.71 for sediment. An exercise to predict nonylphenol effects using our toxicity data and normalized partition coefficients indicated organic carbon content was most protective and also highlighted the need for further research to better understand nonylphenol bioavailability. These data suggested that with regard to partitioning and bioavailability, the oxygenated NOC nonylphenol behaves like conventional NOCs. The data also suggest that, with refinements, polarity may have some advantages in predicting nonylphenol bioavailability.


Subject(s)
Carbon/chemistry , Phenols/chemistry , Phenols/pharmacokinetics , Animals , Biological Availability , Marine Biology , Phenols/toxicity
14.
Integr Environ Assess Manag ; 11(2): 256-65, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25234621

ABSTRACT

A challenge in environmental passive sampling is determining when equilibrium is achieved between the sampler, target contaminants, and environmental phases. A common approach is the use of performance reference compounds (PRCs) to estimate target contaminant sampling rates and indicate degree of sampler equilibrium. One logistical issue associated with using PRCs is their sometimes exorbitant cost. To address PRC expense, this investigation 1) compared the performance of inexpensive PRCs (deuterated PAHs) and expensive PRCs ((13) C-labeled PCBs) to estimate dissolved PCB concentrations in freshwater and marine deployments, and 2) evaluated the use of smaller quantities of PRC relative to regular amounts used for estimating dissolved PAH and PCB concentrations. Saltwater and freshwater site average differences between total dissolved PCB concentrations calculated using the 2 classes of PRCs was 34 pg/L (20%) and 340 pg/L (51%), respectively, and in some deployments, statistical differences in PCB concentrations generated by the 2 types of PRCs were detected. However, no statistical differences were detected between total dissolved PAH and PCB for the 3 quantities of PRCs. In both investigations, individual dissolved PCB congeners and PAH compounds demonstrated comparable behavior as those expressed as total PCB or PAH dissolved concentrations. This research provides evidence that in some applications passive sampling using inexpensive and smaller quantities of PRCs can yield cost savings of approximately 75%. This approach appears most promising in the marine water column and when focusing on dissolved concentrations of low and medium molecular weight congeners or total PCBs.


Subject(s)
Environmental Monitoring/economics , Environmental Monitoring/methods , Polyethylenes/economics , Water Pollutants, Chemical/analysis , Models, Theoretical , Polyethylenes/analysis
15.
Environ Toxicol Chem ; 34(8): 1720-33, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26039657

ABSTRACT

Currently, there is an effort under way to encourage remedial project managers at contaminated sites to use passive sampling to collect freely dissolved concentrations (Cfree ) of hydrophobic organic contaminants to improve site assessments. The objective of the present study was to evaluate the use of passive sampling for measuring water column Cfree for several hydrophobic organic contaminants at 3 US Environmental Protection Agency Superfund sites. Sites investigated included New Bedford Harbor (New Bedford, MA, USA), Palos Verdes Shelf (Los Angeles, CA, USA), and Naval Station Newport (Newport, RI, USA); and the passive samplers evaluated were polyethylene, polydimethylsiloxane-coated solid-phase microextraction fibers, semipermeable membrane devices, and polyoxymethylene. In general, the different passive samplers demonstrated good agreement, with Cfree values varying by a factor of 2 to 3. Further, at New Bedford Harbor, where conventional water sample concentrations were also measured (i.e., grab samples), passive sampler-based Cfree values agreed within a factor of 2. These findings suggest that all of the samplers were experiencing and measuring similar Cfree during their respective deployments. Also, at New Bedford Harbor, a strong log-linear, correlative, and predictive relationship was found between polyethylene passive sampler accumulation and lipid-normalized blue mussel bioaccumulation of polychlorinated biphenyls (r(2) = 0.92, p < 0.05). The present study demonstrates the utility of passive sampling for generating scientifically accurate water column Cfree values, which is critical for making informed environmental management decisions at contaminated sediment sites.


Subject(s)
Environmental Monitoring , Water Purification , Animals , Bivalvia/metabolism , Dimethylpolysiloxanes/chemistry , Gas Chromatography-Mass Spectrometry , Geologic Sediments/chemistry , Hydrophobic and Hydrophilic Interactions , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/isolation & purification , Polychlorinated Biphenyls/metabolism , Polyethylene/chemistry , Solid Phase Microextraction , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/metabolism
16.
Environ Toxicol Chem ; 23(11): 2534-44, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15559266

ABSTRACT

Recent studies demonstrate that sedimentary black carbon (BC) affects the sorption of some hydrophobic organic contaminants (HOCs) to a greater extent than sedimentary organic carbon (OC). Among HOC, polycyclic aromatic hydrocarbons (PAHs) are known to interact extensively with BC. Currently, data on the sorption of various kinds of HOCs to different types of BC are limited. In this study, we amended a marine sediment with BC from several different sources, humic acid, and inert sand. Equilibration studies with 14C fluoranthene and the polychlorinated biphenyl (PCB) 3H 2,4'-dichlorinated biphenyl were performed to determine the magnitude of sorption as a function of contaminant and BC type. The magnitude of sorption to the BC-amended sediments was greater for the PAH than the PCB as compared to the sediment alone, humic acid, and sand. For example, differences between the log partition coefficient (K(P)) for the PAH and PCB ranged from 0.41 to 0.69 log units for humic acid and sand treatments, while differences ranged from 0.88 to 1.57 log units for the BC-amended sediments. As a result, BC-normalized partition coefficients (log K(BC)) for the PAH averaged 6.41, whereas the PCB log K(BC) values averaged 5.33. These results demonstrate that PAH sorption and most likely bioavailability are influenced strongly by the presence of BC of different types, while sorption of a nonplanar PCB was affected to a lesser degree.


Subject(s)
Carbon/chemistry , Fluorenes/chemistry , Geologic Sediments/chemistry , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Adsorption , Biological Availability , Models, Chemical , Polychlorinated Biphenyls/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Seawater , Tritium
17.
Environ Toxicol Chem ; 23(9): 2124-31, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15378988

ABSTRACT

We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endosulfan-spiked sediments by 100%. Powdered coconut charcoal also was effective in removing almost 100% of the toxicity from two field sediments contaminated with polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). Powdered coconut charcoal did not change the toxicity of ammonia or metal-spiked sediments; however, there was some quantitative reduction in the concentrations of free metals (element specific) in metal-spiked sediments. Powdered coconut charcoal is an effective, relatively specific method to sequester and remove toxicity from sediments contaminated with organic contaminants.


Subject(s)
Charcoal/chemistry , Geologic Sediments/chemistry , Waste Management/methods , Water Pollutants, Chemical/analysis , Adsorption , Ammonia/analysis , Amphipoda/drug effects , Amphipoda/physiology , Animals , Cocos , Crustacea/drug effects , Crustacea/physiology , Endosulfan/toxicity , Geologic Sediments/classification , Metals/analysis , Polychlorinated Biphenyls/analysis , Resins, Synthetic , Water Pollutants, Chemical/toxicity
18.
Environ Toxicol Chem ; 33(5): 1023-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24464618

ABSTRACT

The behavior and fate of nanoparticles (NPs) in the marine environment are largely unknown and potentially have important environmental and human health implications. The aggregation and fate of NPs in the marine environment are greatly influenced by their interactions with seawater and dissolved organic carbon (DOC). In the present study, the stability and aggregation of 30-nm-diameter silver nanoparticles (AgNPs) capped with citrate and polyvinylpyrrolidone (PVP; AgNP-citrate and AgNP-PVP) and 21-nm-diameter titanium dioxide (TiO(2)) NPs as affected by seawater salinity and DOC were investigated by measuring hydrodynamic diameters and zeta potentials. The added DOC (in humic acid form) stabilized the 3 types of NPs when the seawater salinities were ≤5 parts per thousand (ppt), but the stabilizing effect of DOC was reduced by a higher salinity (e.g., 30 ppt). In addition, AgNP-PVP was more stable than AgNP-citrate in seawater, indicating that surface capping agents and stabilization mechanisms govern the stability and aggregation of NPs. Statistical analysis showed that salinity is the most dominant influence on the stability and aggregation of AgNPs and TiO(2) NPs, followed by DOC. These findings expand our knowledge on the behavior of AgNPs and TiO2 NPs in seawater and indicate that the fate of these NPs will be primarily to aggregate in the water column, precipitate, and accumulate in sediments following release into the marine environment.


Subject(s)
Metal Nanoparticles/chemistry , Seawater/chemistry , Silver/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Hydrodynamics , Salinity
19.
Nanotoxicology ; 8 Suppl 1: 111-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24266834

ABSTRACT

Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well-studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNTs). Little research has investigated the potential of SWNT to adsorb and sequester HOCs in complex environmental systems. This study addressed the capacity of SWNT, amended to polychlorinated biphenyl (PCB)-contaminated New Bedford Harbor (NBH) sediment, to reduce the toxicity and bioaccumulation of these HOCs to benthic organisms. Overall, SWNT amendments increased the survival of two benthic estuarine invertebrates, Americamysis bahia and Ampelisca abdita, and reduced the accumulation of PCBs to the benthic polychaete, Nereis virens. Reduction in PCB bioaccumulation by SWNT was independent of Kow. Further, passive sampling-based estimates of interstitial water concentrations indicated that SWNT reduced PCB bioavailability. Results from this study suggest that SWNT are a good adsorbent for PCBs and might be useful for remediation in the future once SWNT manufacturing technology improves and costs decrease.


Subject(s)
Geologic Sediments/analysis , Nanotubes, Carbon , Polychlorinated Biphenyls/pharmacokinetics , Biological Availability , Spectrum Analysis/methods
20.
Environ Toxicol Chem ; 32(10): 2182-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23832638

ABSTRACT

Contaminants enter marine and estuarine environments and pose a risk to human and ecological health. Recently, passive sampling devices have been utilized to estimate dissolved concentrations of contaminants of concern (COCs), such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). In the present study, the performance of 3 common passive samplers was evaluated for sampling PAHs and PCBs at several stations in the temperate estuary Narragansett Bay, Rhode Island, USA. Sampler polymers included polyethylene (PE), polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers, and polyoxymethylene (POM). Dissolved concentrations of each contaminant were calculated using measured sampler concentrations adjusted for equilibrium conditions with performance reference compounds (PRCs) and chemical-specific partition coefficients derived in the laboratory. Despite differences in PE and POM sampler concentrations, calculated total dissolved concentrations ranged from 14 ng/L to 93 ng/L and from 13 pg/L to 465 pg/L for PAHs and PCBs, respectively. Dissolved concentrations of PAHs were approximately 3 times greater based on POM compared to PE, while dissolved concentrations of PCBs based on PE were approximately 3 times greater than those based on POM. Concentrations in SPME were not reported due to the lack of detectable chemical in the amount of PDMS polymer deployed. Continued research is needed to improve and support PE and POM use for the routine monitoring of COCs. For example, a better understanding of the use of PRCs with POM is critically needed.


Subject(s)
Estuaries , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Dimethylpolysiloxanes , Environmental Monitoring , Humans , Polyethylene , Resins, Synthetic , Rhode Island , Solid Phase Microextraction
SELECTION OF CITATIONS
SEARCH DETAIL