Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 626(8000): 897-904, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297118

ABSTRACT

Intrinsically disordered proteins and regions (collectively, IDRs) are pervasive across proteomes in all kingdoms of life, help to shape biological functions and are involved in numerous diseases. IDRs populate a diverse set of transiently formed structures and defy conventional sequence-structure-function relationships1. Developments in protein science have made it possible to predict the three-dimensional structures of folded proteins at the proteome scale2. By contrast, there is a lack of knowledge about the conformational properties of IDRs, partly because the sequences of disordered proteins are poorly conserved and also because only a few of these proteins have been characterized experimentally. The inability to predict structural properties of IDRs across the proteome has limited our understanding of the functional roles of IDRs and how evolution shapes them. As a supplement to previous structural studies of individual IDRs3, we developed an efficient molecular model to generate conformational ensembles of IDRs and thereby to predict their conformational properties from sequences4,5. Here we use this model to simulate nearly all of the IDRs in the human proteome. Examining conformational ensembles of 28,058 IDRs, we show how chain compaction is correlated with cellular function and localization. We provide insights into how sequence features relate to chain compaction and, using a machine-learning model trained on our simulation data, show the conservation of conformational properties across orthologues. Our results recapitulate observations from previous studies of individual protein systems and exemplify how to link-at the proteome scale-conformational ensembles with cellular function and localization, amino acid sequence, evolutionary conservation and disease variants. Our freely available database of conformational properties will encourage further experimental investigation and enable the generation ofĀ hypotheses about the biological roles and evolution of IDRs.


Subject(s)
Intrinsically Disordered Proteins , Models, Molecular , Protein Conformation , Proteome , Humans , Amino Acid Sequence , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Proteome/chemistry , Proteome/metabolism , Structure-Activity Relationship , Evolution, Molecular , Disease/genetics
2.
Biophys J ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39340154

ABSTRACT

Measuring the compaction of a protein or complex is key to our understanding of the interactions within and between biomolecules. Experimentally, protein compaction is often probed either by estimating the radius of gyration (Rg) obtained from small-angle x-ray scattering (SAXS) experiments or the hydrodynamic radius (Rh) obtained, for example, by pulsed field gradient NMR (PFG NMR) spectroscopy. PFG NMR experiments generally report on the translational diffusion coefficient, which in turn can be used to estimate Rh using an internal standard to account for sample viscosity and uncertainty about the gradient strength. 1,4-Dioxane is one such commonly used internal standard, and the reference value of Rh is therefore important. We have revisited the basis for the commonly used reference value for the Rh of dioxane (2.12Ā Ć…) that is used to convert measured diffusion coefficients into a hydrodynamic radius. We followed the same approach that was used to establish the current reference value by measuring SAXS and PFG NMR data for a set of seven different proteins and using these as standards. Our analysis shows that the current Rh reference value for dioxane Rh is underestimated, and we instead suggest a new value of 2.27Ā Ā± 0.04Ā Ć…. Using this updated reference value results in a Ć¢ĀˆĀ¼7% increase in Rh values for proteins whose hydrodynamic radii have been measured by PFG NMR. These results are particularly important when the absolute value of Rh is of interest such as when determining or validating ensemble descriptions of intrinsically disordered proteins.

3.
Biostatistics ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37811675

ABSTRACT

We propose a nonparametric compound Poisson model for underreported count data that introduces a latent clustering structure for the reporting probabilities. The latter are estimated with the model's parameters based on experts' opinion and exploiting a proxy for the reporting process. The proposed model is used to estimate the prevalence of chronic kidney disease in Apulia, Italy, based on a unique statistical database covering information on m = 258 municipalities obtained by integrating multisource register information. Accurate prevalence estimates are needed for monitoring, surveillance, and management purposes; yet, counts are deemed to be considerably underreported, especially in some areas of Apulia, one of the most deprived and heterogeneous regions in Italy. Our results agree with previous findings and highlight interesting geographical patterns of the disease. We compare our model to existing approaches in the literature using simulated as well as real data on early neonatal mortality risk in Brazil, described in previous research: the proposed approach proves to be accurate and particularly suitable when partial information about data quality is available.

4.
Heart Fail Rev ; 29(2): 379-394, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37728751

ABSTRACT

Heart failure (HF) and chronic kidney disease (CKD) are two pathological conditions with a high prevalence in the general population. When they coexist in the same patient, a strict interplay between them is observed, such that patients affected require a clinical multidisciplinary and personalized management. The diagnosis of HF and CKD relies on signs and symptoms of the patient but several additional tools, such as blood-based biomarkers and imaging techniques, are needed to clarify and discriminate the main characteristics of these diseases. Improved survival due to new recommended drugs in HF has increasingly challenged physicians to manage patients with multiple diseases, especially in case of CKD. However, the safe administration of these drugs in patients with HF and CKD is often challenging. Knowing up to which values Ć¢Ā€Ā‹Ć¢Ā€Ā‹of creatinine or renal clearance each drug can be administered is fundamental. With this review we sought to give an insight on this sizable and complex topic, in order to get clearer ideas and a more precise reference about the diagnostic assessment and therapeutic management of HF and CKD.


Subject(s)
Heart Failure , Renal Insufficiency, Chronic , Humans , Heart Failure/therapy , Heart Failure/drug therapy , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Biomarkers
5.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928213

ABSTRACT

C3 glomerulopathy is a rare disease, characterized by an abnormal activation of the complement's alternative pathway that leads to the accumulation of the C3 component in the kidney. The disease recurs in more than half of kidney transplant recipients, with a significant impact on graft survival. Recurrence of the primary disease represents the second cause of graft loss after organ rejection. In C3 glomerulopathy, there are several risk factors which can promote a recurrence during transplantation, such as delayed graft function, infection and monoclonal gammopathy. All these events can trigger the alternative complement pathway. In this review, we summarize the impact of C3 glomerulopathy on kidney grafts and present the latest treatment options. The most widely used treatments for the disease include corticosteroids and mycophenolate mofetil, which are already used chronically by kidney transplant recipients; thus, additional treatments for C3 glomerulopathy are required. Currently, several studies using anti-complement drugs (i.e., eculizumab, Ravalizumab, avacopan) for C3 glomerulopathy in kidney transplant patients are ongoing with encouraging results.


Subject(s)
Complement C3 , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Complement C3/metabolism , Graft Rejection/etiology , Glomerulonephritis/etiology , Glomerulonephritis/drug therapy , Glomerulonephritis/therapy , Mycophenolic Acid/therapeutic use
6.
Int J Mol Sci ; 25(20)2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39456878

ABSTRACT

Epitope spreading is a critical mechanism driving the progression of autoimmune glomerulonephritis. This phenomenon, where immune responses broaden from a single epitope to encompass additional targets, contributes to the complexity and severity of diseases such as membranous nephropathy (MN), lupus nephritis (LN), and ANCA-associated vasculitis (AAV). In MN, intramolecular spreading within the phospholipase A2 receptor correlates with a worse prognosis, while LN exemplifies both intra- and intermolecular spreading, exacerbating renal involvement. Similarly, ANCA reactivity in AAV highlights the destructive potential of epitope diversification. Understanding these immunological cascades reveals therapeutic opportunities-targeting early epitope spreading could curb disease progression. Despite promising insights, the clinical utility of epitope spreading as a prognostic tool remains debated. This review provides a complete overview of the current evidence, exploring the dual-edged nature of epitope spreading, the intricate immune mechanisms behind it, and its therapeutic implications. By elucidating these dynamics, we aim to pave the way for more precise, targeted interventions in autoimmune glomerular diseases.


Subject(s)
Epitopes , Glomerulonephritis , Humans , Glomerulonephritis/immunology , Epitopes/immunology , Glomerulonephritis, Membranous/immunology , Animals , Lupus Nephritis/immunology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Autoantibodies/immunology , Receptors, Phospholipase A2/immunology , Autoimmune Diseases/immunology
7.
Biophys J ; 122(2): 310-321, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36518077

ABSTRACT

Diffusion measurements by pulsed-field gradient NMR and fluorescence correlation spectroscopy can be used to probe the hydrodynamic radius of proteins, which contains information about the overall dimension of a protein in solution. The comparison of this value with structural models of intrinsically disordered proteins is nonetheless impaired by the uncertainty of the accuracy of the methods for computing the hydrodynamic radius from atomic coordinates. To tackle this issue, we here build conformational ensembles of 11 intrinsically disordered proteins that we ensure are in agreement with measurements of compaction by small-angle x-ray scattering. We then use these ensembles to identify the forward model that more closely fits the radii derived from pulsed-field gradient NMR diffusion experiments. Of the models we examined, we find that the Kirkwood-Riseman equation provides the best description of the hydrodynamic radius probed by pulsed-field gradient NMR experiments. While some minor discrepancies remain, our results enable better use of measurements of the hydrodynamic radius in integrative modeling and for force field benchmarking and parameterization.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/chemistry , Radius/metabolism , Hydrodynamics , Protein Conformation , Spectrometry, Fluorescence , Scattering, Small Angle
8.
Int J Mol Sci ; 24(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37833944

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a rare disease caused by a genetic dysregulation of the alternative complement pathway, characterized by thrombocytopenia, hemolytic anemia, and acute kidney injury, and included in the group of thrombotic microangiopathies. With the introduction of humanized monoclonal antibodies that inhibit C5 activation, the natural history of aHUS completely changed, with a better prognosis, a quick recovery of renal function, and a significant reduction of end-stage renal disease incidence. Nowadays, there is an increasing interest in the molecular and genetic bases of this severe disease. The aim of this narrative review is to provide readers with a practical guide about different possible involved genes, elucidating the specific role of each transcribed protein in the pathogenesis of aHUS. Moreover, we analyzed the main current evidence about the relationship among genetic mutations, outcomes, and the risk of recurrence of this manifold disease.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Kidney Failure, Chronic , Thrombotic Microangiopathies , Humans , Atypical Hemolytic Uremic Syndrome/genetics , Thrombotic Microangiopathies/complications , Kidney Failure, Chronic/complications , Acute Kidney Injury/complications , Mutation
9.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982216

ABSTRACT

In the past years, indoxyl sulfate has been strongly implicated in kidney disease progression and contributed to cardiovascular morbidity. Moreover, as a result of its elevated albumin affinity rate, indoxyl sulfate is not adequately cleared by extracorporeal therapies. Within this scenario, although LC-MS/MS represents the conventional approach for IS quantification, it requires dedicated equipment and expert skills and does not allow real-time analysis. In this pilot study, we implemented a fast and simple technology designed to determine serum indoxyl sulfate levels that can be integrated into clinical practice. Indoxyl sulfate was detected at the time of enrollment by Tandem MS from 25 HD patients and 20 healthy volunteers. Next, we used a derivatization reaction to transform the serum indoxyl sulfate into Indigo blue. Thanks to the spectral shift to blue, its quantity was measured by the colorimetric assay at a wavelength of 420-450 nm. The spectrophotometric analysis was able to discriminate the levels of IS between healthy subjects and HD patients corresponding to the LC-MS/MS. In addition, we found a strong linear relationship between indoxyl sulfate levels and Indigo levels between the two methods (Tandem MS and spectrophotometry). This innovative method in the assessment of gut-derived indoxyl sulfate could represent a valid tool for clinicians to monitor CKD progression and dialysis efficacy.


Subject(s)
Renal Insufficiency, Chronic , Uremic Toxins , Humans , Indican , Renal Dialysis , Chromatography, Liquid , Pilot Projects , Tandem Mass Spectrometry/methods , Renal Insufficiency, Chronic/therapy
10.
Environ Res ; 204(Pt B): 112007, 2022 03.
Article in English | MEDLINE | ID: mdl-34509482

ABSTRACT

BACKGROUND: In cities suffering from heavy environmental pressure or pollution, it is extremely important to rapidly access municipal demographics that can be used as indicators of population health status. Among those, mortality rates represent the most reliable data as they are officially retained and available to municipality with high level of details, thus allowing epidemiological comparison between different neighborhoods of the city across several years. Our study was aimed at validating and propose as universally applicable approach the use of municipal demographics as first-line tool to rapidly assess population health and drive health policies or urban planning in cities characterized by heavy environmental pressure. The case study of Taranto has been chosen due to the presence of the biggest European steel plant since 1960s resulting in heavy burden on environment and population health. METHODS: We have performed an ecological study on general mortality data due to all causes, specific by gender, age groups and disaggregated at sub-municipal level (highest data granularity) into neighborhoods from 2011 to 2020 by using official demographics related to all people living in Taranto available at General Registry Office of the municipality. A preliminary analysis comparing data available at Municipality and those provided by the Italian National Institute of Statistics (ISTAT) was performed and confirmed the high level of reliability of the municipal source of data. For comparative analyses, we used Regional demographics and mortality from ISTAT. Indirect age-standardized mortality ratios (SMR; CI 90% and 95%), specific for gender and neighborhoods, were calculated in reference to the city of Taranto and Apulia Region; direct age-standardized and neighborhoods mortality rates were computed on city population. RESULTS: The city of Taranto shows relevant inequalities in terms of mortality between the northern neighborhoods, closest to the industrial area (Paolo VI, Tamburi and CittĆ  Vecchia-Borgo), with excess mortality highlighted across 10 years described by SMRs always higher than those of the entire Apulia region, with peaks exceeding 50% between 2015 and 2017 both in women and men. The significant excesses of mortality have increased from 2011 to 2020 and progressively extended across several neighborhoods of Taranto city. Compared to the Apulia region, in the 3 Northern neighborhoods of the city (Paolo VI, Tamburi and CittĆ  Vecchia-Borgo) a total of 1020 excess deaths were recorded from 2011 to 2019 in both males and females (showing statistical significance), with a peak of 68% mortality excess in 2019 for men living in Paolo VI district. CONCLUSION: The use of official mortality data allows a timely, reliable and costless assessment of population health in cities heavily impacted by environmental pollution like Taranto.


Subject(s)
Environmental Pollution , Industry , Cities , Female , Health Status , Humans , Italy/epidemiology , Male , Mortality , Reproducibility of Results
11.
Biophys J ; 120(22): 5124-5135, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34627764

ABSTRACT

Intrinsically disordered proteins and flexible regions in multidomain proteins display substantial conformational heterogeneity. Characterizing the conformational ensembles of these proteins in solution typically requires combining one or more biophysical techniques with computational modeling or simulations. Experimental data can either be used to assess the accuracy of a computational model or to refine the computational model to get a better agreement with the experimental data. In both cases, one generally needs a so-called forward model (i.e., an algorithm to calculate experimental observables from individual conformations or ensembles). In many cases, this involves one or more parameters that need to be set, and it is not always trivial to determine the optimal values or to understand the impact on the choice of parameters. For example, in the case of small-angle x-ray scattering (SAXS) experiments, many forward models include parameters that describe the contribution of the hydration layer and displaced solvent to the background-subtracted experimental data. Often, one also needs to fit a scale factor and a constant background for the SAXS data but across the entire ensemble. Here, we present a protocol to dissect the effect of the free parameters on the calculated SAXS intensities and to identify a reliable set of values. We have implemented this procedure in our Bayesian/maximum entropy framework for ensemble refinement and demonstrate the results on four intrinsically disordered proteins and a protein with three domains connected by flexible linkers. Our results show that the resulting ensembles can depend on the parameters used for solvent effects and suggest that these should be chosen carefully. We also find a set of parameters that work robustly across all proteins.


Subject(s)
Intrinsically Disordered Proteins , Bayes Theorem , Molecular Dynamics Simulation , Protein Conformation , Scattering, Small Angle , X-Ray Diffraction , X-Rays
12.
Am J Transplant ; 21(2): 838-845, 2021 02.
Article in English | MEDLINE | ID: mdl-33091234

ABSTRACT

IgA nephropathy (IgAN) is a frequent cause of chronic kidney disease (CKD) and progressive renal impairment. A native renal biopsy diagnosis of IgAN is a predictor of graft loss, with a relative risk of 47% but it is difficult to predict graft survival and progressive allograft dysfunction in these patients. Deletion of complement factor H-related genes 1 and 3 (delCFHR3-1) has been associated with a decreased risk of developing IgAN on native kidneys, but the impact on the graft in IgAN-transplanted patients is unknown. We hypothesized that delCFHR3-1 is also associated with the processes that influence graft survival in transplant recipients with IgAN and tested whether cellular senescence is involved in mediating graft damage. We found that patients carrying two copies of CFHR1-3 had a worse outcome (PĀ =Ā .000321) and presented increased FHR1 deposits at glomerular and tubulointerstitial level associated with higher expression of the senescence marker p16INK4a (PĀ =Ā .001) and tubulointerstitial fibrosis (PĀ =Ā .005). Interestingly, FHR1 deposits were associated with increased complement activation as demonstrated by C5b-9 deposits. These data support both the role of FHR1 in mediating complement activation and tubular senescence, and suggest the possibility of genotyping delCFHR3-1 to predict graft survival in IgAN-transplanted patients.


Subject(s)
Glomerulonephritis, IGA , Kidney Transplantation , Cellular Senescence , Graft Survival , Humans , Kidney , Kidney Transplantation/adverse effects
13.
Nephrol Dial Transplant ; 36(3): 452-464, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33200215

ABSTRACT

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulonephritis. The role of the microbiota and mucosal immunity in the pathogenesis of IgAN remains a key element. To date, the hypothetical relationship between commensal bacteria, elevated tumour necrosis factor (TNF) superfamily member 13 [also known as B-cell activating factor (BAFF)] levels, perturbed homoeostasis of intestinal-activated B cells and intestinal IgA class switch has not been clearly shown in IgAN patients. METHODS: We studied the intestinal-renal axis connections, analysing levels of BAFF, TNF ligand superfamily member 13 (APRIL) and intestinal-activated B cells in IgAN patients, healthy subjects (HSs) and patients with non-IgA glomerulonephritides. RESULTS: IgAN patients had increased serum levels of BAFF cytokine, correlating with higher amounts of five specific microbiota metabolites, and high APRIL cytokine serum levels. We also found that subjects with IgAN have a higher level of circulating gut-homing (CCR9+ Ɵ7 integrin+) regultory B cells, memory B cells and IgA+ memory B cells compared with HSs. Finally, we found that IgAN patients had high levels of both total plasmablasts (PBs) and intestinal-homing PBs. Interestingly, PBs significantly increased in IgAN but not in patients with other glomerulonephritides. CONCLUSIONS: Our results demonstrate a significant difference in the amount of intestinal-activated B lymphocytes between IgAN patients and HSs, confirming the hypothesis of the pathogenic role of intestinal mucosal hyperresponsiveness in IgAN. The intestinal-renal axis plays a crucial role in IgAN and several factors may contribute to its complex pathogenesis and provide an important area of research for novel targeted therapies to modulate progression of the disease.


Subject(s)
B-Lymphocytes/immunology , Gastrointestinal Microbiome/immunology , Glomerulonephritis, IGA/complications , Immunity, Mucosal/immunology , Immunoglobulin A/blood , Inflammation/pathology , Intestinal Mucosa/immunology , Adult , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Case-Control Studies , Cytokines/metabolism , Female , Humans , Inflammation/etiology , Inflammation/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Middle Aged
14.
BMC Med Inform Decis Mak ; 21(Suppl 1): 300, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34724926

ABSTRACT

BACKGROUND: Computer-aided diagnosis (CAD) systems based on medical images could support physicians in the decision-making process. During the last decades, researchers have proposed CAD systems in several medical domains achieving promising results. CAD systems play an important role in digital pathology supporting pathologists in analyzing biopsy slides by means of standardized and objective workflows. In the proposed work, we designed and tested a novel CAD system module based on image processing techniques and machine learning, whose objective was to classify the condition affecting renal corpuscles (glomeruli) between sclerotic and non-sclerotic. Such discrimination is useful for the biopsy slides evaluation performed by pathologists. RESULTS: We collected 26 digital slides taken from the kidneys of 19 donors with Periodic Acid-Schiff staining. Expert pathologists have conducted the slides preparation, digital acquisition and glomeruli annotations. Before setting the classifiers, we evaluated several feature extraction techniques from the annotated regions. Then, a feature reduction procedure followed by a shallow artificial neural network allowed discriminating between the glomeruli classes. We evaluated the workflow considering an independent dataset (i.e., processing images not used in the training procedure). Ten independent runs of the training algorithm, and evaluation, allowed achieving MCC and Accuracy of 0.95 (Ā± 0.01) and 0.99 (standard deviation < 0.00), respectively. We also obtained good precision (0.9844 Ā± 0.0111) and recall (0.9310 Ā± 0.0153). CONCLUSIONS: Results on the test set confirm that the proposed workflow is consistent and reliable for the investigated domain, and it can support the clinical practice of discriminating the two classes of glomeruli. Analyses on misclassifications show that the involved images are usually affected by staining artefacts or present partial sections due to slice preparation and staining processes. In clinical practice, however, pathologists discard images showing such artefacts.


Subject(s)
Diagnosis, Computer-Assisted , Neural Networks, Computer , Algorithms , Biopsy , Humans , Kidney/diagnostic imaging
15.
Sensors (Basel) ; 21(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34960595

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected hundreds of millions of individuals and caused millions of deaths worldwide. Predicting the clinical course of the disease is of pivotal importance to manage patients. Several studies have found hematochemical alterations in COVID-19 patients, such as inflammatory markers. We retrospectively analyzed the anamnestic data and laboratory parameters of 303 patients diagnosed with COVID-19 who were admitted to the Polyclinic Hospital of Bari during the first phase of the COVID-19 global pandemic. After the pre-processing phase, we performed a survival analysis with Kaplan-Meier curves and Cox Regression, with the aim to discover the most unfavorable predictors. The target outcomes were mortality or admission to the intensive care unit (ICU). Different machine learning models were also compared to realize a robust classifier relying on a low number of strongly significant factors to estimate the risk of death or admission to ICU. From the survival analysis, it emerged that the most significant laboratory parameters for both outcomes was C-reactive protein min; HR=17.963 (95% CI 6.548-49.277, p < 0.001) for death, HR=1.789 (95% CI 1.000-3.200, p = 0.050) for admission to ICU. The second most important parameter was Erythrocytes max; HR=1.765 (95% CI 1.141-2.729, p < 0.05) for death, HR=1.481 (95% CI 0.895-2.452, p = 0.127) for admission to ICU. The best model for predicting the risk of death was the decision tree, which resulted in ROC-AUC of 89.66%, whereas the best model for predicting the admission to ICU was support vector machine, which had ROC-AUC of 95.07%. The hematochemical predictors identified in this study can be utilized as a strong prognostic signature to characterize the severity of the disease in COVID-19 patients.


Subject(s)
COVID-19 , Hospital Mortality , Humans , Machine Learning , Prognosis , Retrospective Studies , SARS-CoV-2 , Survival Analysis
16.
Int J Mol Sci ; 22(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068941

ABSTRACT

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/prevention & control , Fibrosis/prevention & control , Lysine/chemistry , Nitrofurans/pharmacology , Ramipril/pharmacology , Sulfones/pharmacology , Ubiquitination , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Drug Therapy, Combination , Female , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Mice , Mice, Inbred DBA
18.
BMC Med Inform Decis Mak ; 19(Suppl 9): 244, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31830973

ABSTRACT

BACKGROUND: The automatic segmentation of kidneys in medical images is not a trivial task when the subjects undergoing the medical examination are affected by Autosomal Dominant Polycystic Kidney Disease (ADPKD). Several works dealing with the segmentation of Computed Tomography images from pathological subjects were proposed, showing high invasiveness of the examination or requiring interaction by the user for performing the segmentation of the images. In this work, we propose a fully-automated approach for the segmentation of Magnetic Resonance images, both reducing the invasiveness of the acquisition device and not requiring any interaction by the users for the segmentation of the images. METHODS: Two different approaches are proposed based on Deep Learning architectures using Convolutional Neural Networks (CNN) for the semantic segmentation of images, without needing to extract any hand-crafted features. In details, the first approach performs the automatic segmentation of images without any procedure for pre-processing the input. Conversely, the second approach performs a two-steps classification strategy: a first CNN automatically detects Regions Of Interest (ROIs); a subsequent classifier performs the semantic segmentation on the ROIs previously extracted. RESULTS: Results show that even though the detection of ROIs shows an overall high number of false positives, the subsequent semantic segmentation on the extracted ROIs allows achieving high performance in terms of mean Accuracy. However, the segmentation of the entire images input to the network remains the most accurate and reliable approach showing better performance than the previous approach. CONCLUSION: The obtained results show that both the investigated approaches are reliable for the semantic segmentation of polycystic kidneys since both the strategies reach an Accuracy higher than 85%. Also, both the investigated methodologies show performances comparable and consistent with other approaches found in literature working on images from different sources, reducing both the invasiveness of the analyses and the interaction needed by the users for performing the segmentation task.


Subject(s)
Deep Learning , Magnetic Resonance Imaging/methods , Polycystic Kidney, Autosomal Dominant , Semantics , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Spectroscopy , Neural Networks, Computer , Tomography, X-Ray Computed
19.
Int J Mol Sci ; 21(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888082

ABSTRACT

IgA Nephropathy (IgAN) is a primary glomerulonephritis problem worldwide that develops mainly in the 2nd and 3rd decade of life and reaches end-stage kidney disease after 20 years from the biopsy-proven diagnosis, implying a great socio-economic burden. IgAN may occur in a sporadic or familial form. Studies on familial IgAN have shown that 66% of asymptomatic relatives carry immunological defects such as high IgA serum levels, abnormal spontaneous in vitro production of IgA from peripheral blood mononuclear cells (PBMCs), high serum levels of aberrantly glycosylated IgA1, and an altered PBMC cytokine production profile. Recent findings led us to focus our attention on a new perspective to study the pathogenesis of this disease, and new studies showed the involvement of factors driven by environment, lifestyle or diet that could affect the disease. In this review, we describe the results of studies carried out in IgAN patients derived from genomic and epigenomic studies. Moreover, we discuss the role of the microbiome in the disease. Finally, we suggest a new vision to consider IgA Nephropathy as a disease that is not disconnected from the environment in which we live but influenced, in addition to the genetic background, also by other environmental and behavioral factors that could be useful for developing precision nephrology and personalized therapy.


Subject(s)
Glomerulonephritis, IGA/genetics , Immunoglobulin A/blood , Cytokines/blood , Epigenomics , Genetic Predisposition to Disease , Genome-Wide Association Study , Glomerulonephritis, IGA/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL