Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 19(7): e1011506, 2023 07.
Article in English | MEDLINE | ID: mdl-37459366

ABSTRACT

In addition to antioxidative and anti-inflammatory properties, activators of the cytoprotective nuclear factor erythroid-2-like-2 (NRF2) signaling pathway have antiviral effects, but the underlying antiviral mechanisms are incompletely understood. We evaluated the ability of the NRF2 activators 4-octyl itaconate (4OI), bardoxolone methyl (BARD), sulforaphane (SFN), and the inhibitor of exportin-1 (XPO1)-mediated nuclear export selinexor (SEL) to interfere with influenza virus A/Puerto Rico/8/1934 (H1N1) infection of human cells. All compounds reduced viral titers in supernatants from A549 cells and vascular endothelial cells in the order of efficacy SEL>4OI>BARD = SFN, which correlated with their ability to prevent nucleo-cytoplasmic export of viral nucleoprotein and the host cell protein p53. In contrast, intracellular levels of viral HA mRNA and nucleocapsid protein (NP) were unaffected. Knocking down mRNA encoding KEAP1 (the main inhibitor of NRF2) or inactivating the NFE2L2 gene (which encodes NRF2) revealed that physiologic NRF2 signaling restricts IAV replication. However, the antiviral effect of all compounds was NRF2-independent. Instead, XPO1 knock-down greatly reduced viral titers, and incubation of Calu3 cells with an alkynated 4OI probe demonstrated formation of a covalent complex with XPO1. Ligand-target modelling predicted covalent binding of all three NRF2 activators and SEL to the active site of XPO1 involving the critical Cys528. SEL and 4OI manifested the highest binding energies, whereby the 4-octyl tail of 4OI interacted extensively with the hydrophobic groove of XPO1, which binds nuclear export sequences on cargo proteins. Conversely, SEL as well as the three NRF2 activators were predicted to covalently bind the functionally critical Cys151 in KEAP1. Blocking XPO1-mediated nuclear export may, thus, constitute a "noncanonical" mechanism of anti-influenza activity of electrophilic NRF2 activators that can interact with similar cysteine environments at the active sites of XPO1 and KEAP1. Considering the importance of XPO1 function to a variety of pathogenic viruses, compounds that are optimized to inhibit both targets may constitute an important class of broadly active host-directed treatments that embody anti-inflammatory, cytoprotective, and antiviral properties.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Humans , Active Transport, Cell Nucleus , Endothelial Cells/metabolism , Influenza A virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Karyopherins/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Ribonucleoproteins/metabolism , RNA, Messenger/metabolism , Virus Replication
2.
J Transl Med ; 22(1): 620, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961383

ABSTRACT

BACKGROUND: COVID-19 is primarily considered a respiratory tract infection, but it can also affect the central nervous system (CNS), which can result in long-term sequelae. In contrast to CNS infections by classic neurotropic viruses, SARS-CoV-2 is usually not detected in cerebrospinal fluid (CSF) from patients with COVID-19 with neurological involvement (neuro-COVID), suggesting fundamental differences in pathogenesis. METHODS: To assess differences in CNS metabolism in neuro-COVID compared to CNS infections with classic neurotropic viruses, we applied a targeted metabolomic analysis of 630 metabolites to CSF from patients with (i) COVID-19 with neurological involvement [n = 16, comprising acute (n = 13) and post-COVID-19 (n = 3)], (ii) viral meningitis, encephalitis, or myelitis (n = 10) due to herpes simplex virus (n = 2), varicella zoster virus (n = 6), enterovirus (n = 1) and tick-borne encephalitis virus (n = 1), and (iii) aseptic neuroinflammation (meningitis, encephalitis, or myelitis) of unknown etiology (n = 21) as additional disease controls. RESULTS: Standard CSF parameters indicated absent or low neuroinflammation in neuro-COVID. Indeed, CSF cell count was low in neuro-COVID (median 1 cell/µL, range 0-12) and discriminated it accurately from viral CNS infections (AUC = 0.99) and aseptic neuroinflammation (AUC = 0.98). 32 CSF metabolites passed quality assessment and were included in the analysis. Concentrations of differentially abundant (fold change ≥|1.5|, FDR ≤ 0.05) metabolites were both higher (9 and 5 metabolites) and lower (2 metabolites) in neuro-COVID than in the other two groups. Concentrations of citrulline, ceramide (d18:1/18:0), and methionine were most significantly elevated in neuro-COVID. Remarkably, triglyceride TG(20:1_32:3) was much lower (mean fold change = 0.09 and 0.11) in neuro-COVID than in all viral CNS infections and most aseptic neuroinflammation samples, identifying it as highly accurate biomarker with AUC = 1 and 0.93, respectively. Across all samples, TG(20:1_32:3) concentration correlated only moderately with CSF cell count (ρ = 0.65), protein concentration (ρ = 0.64), and Q-albumin (ρ = 0.48), suggesting that its low levels in neuro-COVID CSF are only partially explained by less pronounced neuroinflammation. CONCLUSIONS: The results suggest that CNS metabolite responses in neuro-COVID differ fundamentally from viral CNS infections and aseptic neuroinflammation and may be used to discover accurate diagnostic biomarkers in CSF and to gain insights into differences in pathophysiology between neuro-COVID, viral CNS infections and aseptic neuroinflammation.


Subject(s)
Biomarkers , COVID-19 , Metabolomics , SARS-CoV-2 , Humans , COVID-19/cerebrospinal fluid , COVID-19/virology , Biomarkers/cerebrospinal fluid , Metabolomics/methods , Male , Female , Middle Aged , Aged , Adult , Central Nervous System Infections/cerebrospinal fluid , Central Nervous System Infections/virology , Diagnosis, Differential
3.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Article in English | MEDLINE | ID: mdl-35025971

ABSTRACT

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Subject(s)
Influenza A virus/immunology , Macrophages/immunology , Orthomyxoviridae Infections/drug therapy , Succinates/pharmacology , A549 Cells , Animals , Carboxy-Lyases/deficiency , Carboxy-Lyases/immunology , Cytokines/genetics , Cytokines/immunology , Humans , Macrophages/virology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , THP-1 Cells
5.
J Transl Med ; 21(1): 776, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919735

ABSTRACT

BACKGROUND: Viral and autoimmune encephalitis may present with similar symptoms, but require different treatments. Thus, there is a need for biomarkers to improve diagnosis and understanding of pathogenesis. We hypothesized that virus-host cell interactions lead to different changes in central nervous system (CNS) metabolism than autoimmune processes and searched for metabolite biomarkers in cerebrospinal fluid (CSF) to distinguish between the two conditions. METHODS: We applied a targeted metabolomic/lipidomic analysis to CSF samples from patients with viral CNS infections (n = 34; due to herpes simplex virus [n = 9], varicella zoster virus [n = 15], enteroviruses [n = 10]), autoimmune neuroinflammation (n = 25; autoimmune anti-NMDA-receptor encephalitis [n = 8], multiple sclerosis [n = 17), and non-inflamed controls (n = 31; Gilles de la Tourette syndrome [n = 20], Bell's palsy with normal CSF cell count [n = 11]). 85 metabolites passed quality screening and were evaluated as biomarkers. Standard diagnostic CSF parameters were assessed for comparison. RESULTS: Of the standard CSF parameters, the best biomarkers were: CSF cell count for viral infections vs. controls (area under the ROC curve, AUC = 0.93), Q-albumin for viral infections vs. autoimmune neuroinflammation (AUC = 0.86), and IgG index for autoimmune neuroinflammation vs. controls (AUC = 0.90). Concentrations of 2 metabolites differed significantly (p < 0.05) between autoimmune neuroinflammation and controls, with proline being the best biomarker (AUC = 0.77). In contrast, concentrations of 67 metabolites were significantly higher in viral infections than controls, with SM.C16.0 being the best biomarker (AUC = 0.94). Concentrations of 68 metabolites were significantly higher in viral infections than in autoimmune neuroinflammation, and the 10 most accurate metabolite biomarkers (AUC = 0.89-0.93) were substantially better than Q-albumin (AUC = 0.86). These biomarkers comprised six phosphatidylcholines (AUC = 0.89-0.92), two sphingomyelins (AUC = 0.89, 0.91), and acylcarnitines isobutyrylcarnitine (C4, AUC = 0.92) and isovalerylcarnitine (C5, AUC = 0.93). Elevated C4 and C5 concentrations suggested dysfunctional mitochondrial ß-oxidation and correlated only moderately with CSF cell count (Spearman ρ = 0.41 and 0.44), indicating that their increase is not primarily driven by inflammation. CONCLUSIONS: Changes in CNS metabolism differ substantially between viral CNS infections and autoimmune neuroinflammation and reveal CSF metabolites as pathophysiologically relevant diagnostic biomarkers for the differentiation between the two conditions. In viral CNS infections, the observed higher concentrations of free phospholipids are consistent with disruption of host cell membranes, whereas the elevated short-chain acylcarnitines likely reflect compromised mitochondrial homeostasis and energy generation.


Subject(s)
Central Nervous System Viral Diseases , Neuroinflammatory Diseases , Humans , Phospholipids , Central Nervous System Viral Diseases/cerebrospinal fluid , Central Nervous System Viral Diseases/diagnosis , Biomarkers/metabolism , Albumins
6.
Proc Natl Acad Sci U S A ; 116(41): 20644-20654, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548418

ABSTRACT

cis-Aconitate decarboxylase (CAD, also known as ACOD1 or Irg1) converts cis-aconitate to itaconate and plays central roles in linking innate immunity with metabolism and in the biotechnological production of itaconic acid by Aspergillus terreus We have elucidated the crystal structures of human and murine CADs and compared their enzymological properties to CAD from A. terreus Recombinant CAD is fully active in vitro without a cofactor. Murine CAD has the highest catalytic activity, whereas Aspergillus CAD is best adapted to a more acidic pH. CAD is not homologous to any known decarboxylase and appears to have evolved from prokaryotic enzymes that bind negatively charged substrates. CADs are homodimers, the active center is located in the interface between 2 distinct subdomains, and structural modeling revealed conservation in zebrafish and Aspergillus We identified 8 active-site residues critical for CAD function and rare naturally occurring human mutations in the active site that abolished CAD activity, as well as a variant (Asn152Ser) that increased CAD activity and is common (allele frequency 20%) in African ethnicity. These results open the way for 1) assessing the potential impact of human CAD variants on disease risk at the population level, 2) developing therapeutic interventions to modify CAD activity, and 3) improving CAD efficiency for biotechnological production of itaconic acid.


Subject(s)
Carboxy-Lyases/chemistry , Carboxy-Lyases/genetics , Mutation , Succinates/metabolism , A549 Cells , Amino Acid Sequence , Animals , Carboxy-Lyases/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Evolution, Molecular , Humans , Mice , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Sequence Homology
7.
J Transl Med ; 18(1): 9, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31910875

ABSTRACT

BACKGROUND: The timely diagnosis of bacterial meningitis is of utmost importance due to the need to institute antibiotic treatment as early as possible. Moreover, the differentiation from other causes of meningitis/encephalitis is critical because of differences in management such as the need for antiviral or immunosuppressive treatments. Considering our previously reported association between free membrane phospholipids in cerebrospinal fluid (CSF) and CNS involvement in neuroinfections we evaluated phosphatidylcholine PC ae C44:6, an integral constituent of cell membranes, as diagnostic biomarker for bacterial meningitis. METHODS: We used tandem mass spectrometry to measure concentrations of PC ae C44:6 in cell-free CSF samples (n = 221) from patients with acute bacterial meningitis, neuroborreliosis, viral meningitis/encephalitis (herpes simplex virus, varicella zoster virus, enteroviruses), autoimmune neuroinflammation (anti-NMDA-receptor autoimmune encephalitis, multiple sclerosis), facial nerve and segmental herpes zoster (shingles), and noninflammatory CNS disorders (Bell's palsy, Tourette syndrome, normal pressure hydrocephalus). RESULTS: PC ae C44:6 concentrations were significantly higher in bacterial meningitis than in all other diagnostic groups, and were higher in patients with a classic bacterial meningitis pathogen (e.g. Streptococcus pneumoniae, Neisseria meningitidis, Staphylococcus aureus) than in those with less virulent or opportunistic pathogens as causative agents (P = 0.026). PC ae C44:6 concentrations were only moderately associated with CSF cell count (Spearman's ρ = 0.45; P = 0.009), indicating that they do not merely reflect neuroinflammation. In receiver operating characteristic curve analysis, PC ae C44:6 equaled CSF cell count in the ability to distinguish bacterial meningitis from viral meningitis/encephalitis and autoimmune CNS disorders (AUC 0.93 both), but had higher sensitivity (91% vs. 41%) and negative predictive value (98% vs. 89%). A diagnostic algorithm comprising cell count, lactate and PC ae C44:6 had a sensitivity of 97% (specificity 87%) and negative predictive value of 99% (positive predictive value 61%) and correctly diagnosed three of four bacterial meningitis samples that were misclassified by cell count and lactate due to low values not suggestive of bacterial meningitis. CONCLUSIONS: Increased CSF PC ae C44:6 concentrations in bacterial meningitis likely reflect ongoing CNS cell membrane stress or damage and have potential as additional, sensitive biomarker to diagnose bacterial meningitis in patients with less pronounced neuroinflammation.


Subject(s)
Meningitis, Bacterial , Meningitis, Viral , Biomarkers , Cerebrospinal Fluid , Humans , Meningitis, Bacterial/diagnosis , Phosphatidylcholines , ROC Curve
8.
RNA Biol ; 17(1): 112-124, 2020 01.
Article in English | MEDLINE | ID: mdl-31538530

ABSTRACT

The duck represents an important reservoir of influenza viruses for transmission to other avian and mammalian hosts, including humans. The increased pathogenicity of the recently emerging clades of highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype in ducks features systemic viral spread and organ-to-organ variation in viral transcription and tissue damage. We previously reported that experimental infection of Sudani ducks (Cairina moschata) with an Egyptian HPAI (H5N1) virus (clade 2.2.1.2) features high viral replication and severe tissue damage in lung, but lower viral replication and only mild histological changes in brain. Little is known about the involvement of miRNA in organ-specific responses to H5N1 viruses in ducks, and involvement of the other classes of small noncoding RNA (sncRNA) has not been investigated so far. Following RNA sequencing, we have annotated the duck sncRNome and compared global expression changes of the four major sncRNA classes (miRNAs, piRNAs, snoRNAs, snRNAs) between duck lung and brain during a 120 h time course of infection with this HPAI strain. We find major organ-specific differences in miRNA, piRNA and snoRNA populations even before infection and substantial reprogramming of all sncRNA classes throughout infection, which was less pronounced in brain. Pathway prediction analysis of miRNA targets revealed enrichment of inflammation-, infection- and apoptosis-related pathways in lung, but enrichment of metabolism-related pathways (including tryptophan metabolism) in brain. Thus, organ-specific differences in sncRNA responses may contribute to differences in viral replication and organ damage in ducks infected with isolates from this emerging HPAI clade, and likely other strains.


Subject(s)
Ducks/genetics , Ducks/virology , Host-Pathogen Interactions/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/genetics , Influenza in Birds/virology , RNA, Small Untranslated/genetics , Animals , Chromosome Mapping , Gene Expression Profiling , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/metabolism , MicroRNAs/genetics , Organ Specificity/genetics
9.
J Infect Dis ; 220(1): 127-138, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30721966

ABSTRACT

BACKGROUND: The tryptophan-kynurenine-nicotinamide adenine dinucleotide (oxidized; NAD+) pathway is closely associated with regulation of immune cells toward less inflammatory phenotypes and may exert neuroprotective effects. Investigating its regulation in central nervous system (CNS) infections would improve our understanding of pathophysiology and end-organ damage, and, furthermore, open doors to its evaluation as a source of diagnostic and/or prognostic biomarkers. METHODS: We measured concentrations of kynurenine (Kyn) and tryptophan (Trp) in 221 cerebrospinal fluid samples from patients with bacterial and viral (due to herpes simplex, varicella zoster, and enteroviruses) meningitis/encephalitis, neuroborreliosis, autoimmune neuroinflammation (due to anti-N-methyl-D-aspartate receptor [NMDA] encephalitis and multiple sclerosis), and noninflamed controls (ie, individuals with Bell palsy, normal pressure hydrocephalus, or Tourette syndrome). RESULTS: Kyn concentrations correlated strongly with CSF markers of neuroinflammation (ie, leukocyte count, lactate concentration, and blood-CSF-barrier dysfunction), were highly increased in bacterial and viral CNS infections, but were low or undetectable in NMDA encephalitis, multiple sclerosis, and controls. Trp concentrations were decreased mostly in viral CNS infections and neuroborreliosis. Multiple logistic regression analysis revealed that combinations of Kyn concentration, Trp concentration, and Kyn/Trp concentration ratio with leukocyte count or lactate concentration were accurate classifiers for the clinically important differentiation between neuroborreliosis, viral CNS infections, and autoimmune neuroinflammation. CONCLUSIONS: The Trp-Kyn-NAD+ pathway is activated in CNS infections and provides highly accurate CSF biomarkers, particularly when combined with standard CSF indices of neuroinflammation.


Subject(s)
Biomarkers/metabolism , Central Nervous System Infections/metabolism , Cerebrospinal Fluid/microbiology , Cerebrospinal Fluid/virology , Kynurenine/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/metabolism , Autoimmune Diseases/microbiology , Autoimmune Diseases/virology , Central Nervous System Infections/microbiology , Central Nervous System Infections/virology , Female , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/virology , Lactic Acid/metabolism , Leukocyte Count/methods , Male , Middle Aged , Tryptophan/metabolism , Young Adult
10.
J Transl Med ; 17(1): 365, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31711507

ABSTRACT

BACKGROUND: There continues to be a great need for better biomarkers and host-directed treatment targets for community-acquired pneumonia (CAP). Alterations in phospholipid metabolism may constitute a source of small molecule biomarkers for acute infections including CAP. Evidence from animal models of pulmonary infections and sepsis suggests that inhibiting acid sphingomyelinase (which releases ceramides from sphingomyelins) may reduce end-organ damage. METHODS: We measured concentrations of 105 phospholipids, 40 acylcarnitines, and 4 ceramides, as well as acid sphingomyelinase activity, in plasma from patients with CAP (n = 29, sampled on admission and 4 subsequent time points), chronic obstructive pulmonary disease exacerbation with infection (COPD, n = 13) as a clinically important disease control, and 33 age- and sex-matched controls. RESULTS: Phospholipid concentrations were greatly decreased in CAP and normalized along clinical improvement. Greatest changes were seen in phosphatidylcholines, followed by lysophosphatidylcholines, sphingomyelins and ceramides (three of which were upregulated), and were least in acylcarnitines. Changes in COPD were less pronounced, but also differed qualitatively, e.g. by increases in selected sphingomyelins. We identified highly accurate biomarkers for CAP (AUC ≤ 0.97) and COPD (AUC ≤ 0.93) vs. Controls, and moderately accurate biomarkers for CAP vs. COPD (AUC ≤ 0.83), all of which were phospholipids. Phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins were also markedly decreased in S. aureus-infected human A549 and differentiated THP1 cells. Correlations with C-reactive protein and procalcitonin were predominantly negative but only of mild-to-moderate extent, suggesting that these markers reflect more than merely inflammation. Consistent with the increased ceramide concentrations, increased acid sphingomyelinase activity accurately distinguished CAP (fold change = 2.8, AUC = 0.94) and COPD (1.75, 0.88) from Controls and normalized with clinical resolution. CONCLUSIONS: The results underscore the high potential of plasma phospholipids as biomarkers for CAP, begin to reveal differences in lipid dysregulation between CAP and infection-associated COPD exacerbation, and suggest that the decreases in plasma concentrations are at least partially determined by changes in host target cells. Furthermore, they provide validation in clinical blood samples of acid sphingomyelinase as a potential treatment target to improve clinical outcome of CAP.


Subject(s)
Phospholipids/blood , Pneumonia/blood , Sphingomyelin Phosphodiesterase/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Ceramides/blood , Community-Acquired Infections/blood , Community-Acquired Infections/diagnosis , Female , Humans , Inflammation Mediators/blood , Lipidomics , Male , Middle Aged , Pneumonia/diagnosis , Prospective Studies , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Translational Research, Biomedical , Young Adult
11.
BMC Infect Dis ; 19(1): 656, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31337344

ABSTRACT

BACKGROUND: The immune response to seasonal influenza vaccines decreases with advancing age. Therefore, an adjuvanted inactivated trivalent influenza vaccine (Fluad®) exists for elderly individuals. Fluad® is more immunogenic and efficacious than conventional influenza vaccines. However, the immune response varies and may still result in high frequencies of poor responders. Therefore, we aimed to a) examine the prevalence of a weak response to Fluad® and b) identify potential risk factors. METHODS: A prospective population-based study among individuals 65-80 years old was conducted in 2015/2016 in Hannover, Germany (n = 200). Hemagglutination-inhibition titers 21 days after vaccination with Fluad® served as indicator of vaccine responsiveness. RESULTS: The percentage of vaccinees with an inadequate vaccine response varied depending on the influenza strain: it was lowest for H3N2 (13.5%; 95% CI, 9.4-18.9%), intermediate for B strain (37.0%; 30.6-43.9%), and highest for H1N1 (49.0%; 42.2-55.9%). The risk of a weak response to the influenza A H1N1 strain was independently associated with self-reported diabetes (AOR, 4.64; 95% CI, 1.16-18.54), a history of herpes zoster (2.27; 1.01-5.10) and, to a much lesser extent, increasing age (change per year, 1.08; 0.99-1.16). In addition, herpes zoster was the only risk factor for a weak response to the H3N2 antigen (AOR, 3.12; 1.18-8.23). We found no significant association between sex, Body Mass Index, cancer, hypertension, heart attack and CMV seropositivity and a weak response to these two influenza A antigens. Despite its occurence in over one third of vaccinees, none of the variables examined proved to be risk factors for a weak response to the B antigen. CONCLUSIONS: A considerable proportion of elderly individuals displayed a weak vaccine response to this adjuvanted seasonal influenza vaccine and further efforts are thus needed to improve immune responses to influenza vaccination among the elderly. Diabetes and herpes zoster were identified as potentially modifiable risk factors for a poor vaccine response against influenza A antigens, but the results also reveal the need for broader investigations to identify risk factors for inadequate responses to influenza B antigens. TRIAL REGISTRATION: No. NCT02362919 (ClinicalTrials.gov, date of registration: 09.02.2015).


Subject(s)
Diabetes Mellitus/immunology , Herpes Zoster/immunology , Immunity, Humoral , Influenza Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Aged , Aged, 80 and over , Antigens, Viral/immunology , Female , Germany , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/pharmacology , Influenza, Human/immunology , Influenza, Human/prevention & control , Male , Prospective Studies , Seasons , Self Report
12.
Int J Mol Sci ; 20(2)2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30650575

ABSTRACT

Enteroviruses are among the most common causes of viral meningitis. Enteroviral meningitis continues to represent diagnostic challenges, as cerebrospinal fluid (CSF) cell numbers (a well validated diagnostic screening tool) may be normal in up to 15% of patients. We aimed to identify potential CSF biomarkers for enteroviral meningitis, particularly for cases with normal CSF cell count. Using targeted liquid chromatography-mass spectrometry, we determined metabolite profiles from patients with enteroviral meningitis (n = 10), and subdivided them into those with elevated (n = 5) and normal (n = 5) CSF leukocyte counts. Non-inflamed CSF samples from patients with Bell's palsy and normal pressure hydrocephalus (n = 19) were used as controls. Analysis of 91 metabolites revealed considerable metabolic reprogramming in the meningitis samples. It identified phosphatidylcholine PC.ae.C36.3, asparagine, and glycine as an accurate (AUC, 0.92) combined classifier for enterovirus meningitis overall, and kynurenine as a perfect biomarker for enteroviral meningitis with an increased CSF cell count (AUC, 1.0). Remarkably, PC.ae.C36.3 alone emerged as a single accurate (AUC, 0.87) biomarker for enteroviral meningitis with normal cell count, and a combined classifier comprising PC.ae.C36.3, PC.ae.C36.5, and PC.ae.C38.5 achieved nearly perfect classification (AUC, 0.99). Taken together, this analysis reveals the potential of CSF metabolites as additional diagnostic tools for enteroviral meningitis, and likely other Central nervous system (CNS) infections.


Subject(s)
Biomarkers/cerebrospinal fluid , Enterovirus Infections/cerebrospinal fluid , Meningitis, Viral/cerebrospinal fluid , Metabolome , Adult , Aged , Algorithms , Enterovirus Infections/blood , Enterovirus Infections/diagnosis , Female , Humans , Male , Mass Spectrometry , Meningitis, Viral/blood , Meningitis, Viral/diagnosis , Middle Aged , Reproducibility of Results , Young Adult
13.
J Neuroinflammation ; 15(1): 20, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29343258

ABSTRACT

BACKGROUND: Varicella zoster virus (VZV) reactivation spans the spectrum from uncomplicated segmental herpes zoster to life-threatening disseminated CNS infection. Moreover, in the absence of a small animal model for this human pathogen, studies of pathogenesis at the organismal level depend on analysis of human biosamples. Changes in cerebrospinal fluid (CSF) metabolites may reflect critical aspects of host responses and end-organ damage in neuroinfection and neuroinflammation. We therefore applied a targeted metabolomics screen of CSF to three clinically distinct forms of VZV reactivation and infectious and non-infectious disease controls in order to identify biomarkers for CNS involvement in VZV reactivation. METHODS: Metabolite profiles were determined by targeted liquid chromatography-mass spectrometry in CSF from patients with segmental zoster (shingles, n = 14), facial nerve zoster (n = 16), VZV meningitis/encephalitis (n = 15), enteroviral meningitis (n = 10), idiopathic Bell's palsy (n = 11), and normal pressure hydrocephalus (n = 15). RESULTS: Concentrations of 88 metabolites passing quality assessment clearly separated the three VZV reactivation forms from each other and from the non-infected samples. Internal cross-validation identified four metabolites (SM C16:1, glycine, lysoPC a C26:1, PC ae C34:0) that were particularly associated with VZV meningoencephalitis. SM(OH) C14:1 accurately distinguished facial nerve zoster from Bell's palsy. Random forest construction revealed even more accurate classifiers (signatures comprising 2-4 metabolites) for most comparisons. Some of the most accurate biomarkers correlated only weakly with CSF leukocyte count, indicating that they do not merely reflect recruitment of inflammatory cells but, rather, specific pathophysiological mechanisms. Across all samples, only the sum of hexoses and the amino acids arginine, serine, and tryptophan correlated negatively with leukocyte count. Increased expression of the metabolites associated with VZV meningoencephalitis could be linked to processes relating to neuroinflammation/immune activation, neuronal signaling, and cell stress, turnover, and death (e.g., autophagy and apoptosis), suggesting that these metabolites might sense processes relating to end-organ damage. CONCLUSIONS: The results provide proof-of-concept for the value of CSF metabolites as (1) disease-associated signatures suggesting pathophysiological mechanisms, (2) degree and nature of neuroinflammation, and (3) biomarkers for diagnosis and risk stratification of VZV reactivation and, likely, neuroinfections due to other pathogens. TRIAL REGISTRATION: Not applicable (non-interventional study).


Subject(s)
Central Nervous System Viral Diseases/cerebrospinal fluid , Herpesvirus 3, Human/physiology , Metabolomics/methods , Virus Activation/physiology , Adult , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Central Nervous System Viral Diseases/diagnosis , Central Nervous System Viral Diseases/metabolism , Female , Humans , Male , Mass Spectrometry/methods , Middle Aged , Prospective Studies , Young Adult
14.
BMC Med Res Methodol ; 17(1): 18, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28148221

ABSTRACT

BACKGROUND: Participation in epidemiological studies has strongly declined in recent years. We examined the reasons for (non)participation in population-based health studies among participants and nonparticipants of a prospective study on influenza vaccination among the elderly. METHODS: Males and females between 65 and 80 years of age (N = 5582) were randomly selected from the residents' registration office in Hannover, Germany, and were invited to participate in a study featuring vaccination with a seasonal adjuvanted influenza vaccine (Fluad™, Novartis) including five follow-up visits (day 0, 1/3, 7, 21, 70 with respect to vaccination). A 24-item nonresponder questionnaire, including 10 items on reasons for participating in a hypothetical health study, was mailed to 1500 randomly selected nonparticipants. The same 10 items were included in the end-of-study questionnaire administered to the participants in the vaccination study (n = 200). Logistic regression analysis with backward elimination was used to identify the reasons most strongly associated with nonparticipation. RESULTS: Five hundred thirty-one (35%) nonparticipants and 200 participants (100%) returned the respective questionnaires. Nonparticipation was associated with a lower interest in obtaining personal health information (OR = 3.32) and a preference for less invasive (OR = 3.01) and less time-demanding (OR = 2.19) studies. Responses to other items, e.g. regarding altruistic motives, monetary compensation, general interest of the study, or study approval through ethics committee and data security authority, did not differ between participants and nonparticipants. CONCLUSIONS: Participation rates in health studies among elderly individuals could potentially be improved by reducing interventions and time demand, for instance by implementing methods of self-sampling and remote data collection. TRIAL REGISTRATION: No. 1100359 (ClinicalTrials.gov, date of registration: 09.02.2015).


Subject(s)
Health Surveys , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Patient Compliance/psychology , Refusal to Participate/psychology , Vaccination/statistics & numerical data , Aged , Female , Germany , Humans , Male , Motivation , Prospective Studies
15.
Clin Exp Rheumatol ; 34(3): 548-53, 2016.
Article in English | MEDLINE | ID: mdl-27156925

ABSTRACT

OBJECTIVES: Methotrexate (MTX) is used at low doses to treat rheumatologic disorders in the paediatric age group. Toxicity is observed despite the low doses used. Even though recommendations for monitoring of early signs of toxicity exist in many countries, real-life practice may vary. We therefore assessed current practice in Germany, Switzerland and Austria. METHODS: A 22-item questionnaire regarding practices of monitoring MTX therapy was sent by email to all members of the Society for Paediatric and Adolescent Rheumatology (GKJR, n=224). Responses were compared to evidence-based recommendations. RESULTS: 72 of 209 physicians with valid e-mail addresses returned a completed questionnaire (response rate, 34%). Of these, 8 (11%), 18 (25%), 25 (34%) and 21 (29%) reported that they had been treating paediatric patients with rheumatologic disorders for <5 years, 5-10 years, 10-20 years, and >20 years, respectively. Of the tests recommended for routine monitoring, haemogram and liver transaminases were used by all respondents, followed by serum creatinine (97%) and urinalysis (88%). Of the tests not recommended for this purpose, abdominal ultrasound (including liver and kidney), echocardiography, and pulmonary function tests were reported by 51%, 36%, and 51%, respectively, and all three modalities by 28%. The latter was positively associated with a longer duration of practicing paediatric rheumatology but not with the number of patients seen annually. CONCLUSIONS: Real-life practice of MTX toxicity monitoring in the studied population deviated from evidence-based recommendations in the direction of overusing equipment-based testing, which apparently was more pronounced among more senior practitioners.


Subject(s)
Arthritis, Juvenile , Drug Monitoring/methods , Drug-Related Side Effects and Adverse Reactions , Methotrexate , Adolescent , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/adverse effects , Arthritis, Juvenile/drug therapy , Arthritis, Juvenile/epidemiology , Austria/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/prevention & control , Female , Germany/epidemiology , Humans , Male , Medication Therapy Management , Methotrexate/administration & dosage , Methotrexate/adverse effects , Switzerland/epidemiology , Young Adult
16.
Bioinformatics ; 30(11): 1635-6, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24519383

ABSTRACT

UNLABELLED: Receiver operating characteristic (ROC) analysis is usually applied in bioinformatics to evaluate the abilities of biological markers to differentiate between the presence or absence of a disease. It includes the derivation of the useful scalar performance measure area under the ROC curve for binary classification tasks. As real applications often deal with more than two classes, multicategory ROC analysis and the corresponding hypervolume under the manifold (HUM) measure have become a topic of growing interest. To support researchers in carrying out multicategory ROC analysis, we have developed two tools in different programming environments which feature user-friendly, object-oriented and flexible interfaces and enable the user to compute HUM values and plot 2D- and 3D-ROC curves. AVAILABILITY: The software is freely available from our Web site http://public.ostfalia.de/∼klawonn/HUM.htm


Subject(s)
ROC Curve , Software , Internet
17.
Article in English | MEDLINE | ID: mdl-25300826

ABSTRACT

BACKGROUND/OBJECTIVES: The risk to die from an infectious disease in Germany has been continuously decreasing over the last century. Since infections are, however, not only causes of death but risk factors for diseases like cardiovascular diseases, it is essential to monitor and analyze their prevalence and frequency, especially in consideration of the increased life expectancy. To gain more knowledge about infectious diseases as risk factors and their implications on the condition and change of the immune status, the German National Cohort (GNC), a population-based prospective cohort study, will recruit 200,000 subjects between 2014 and 2017. In Pretest 1, a feasibility study for the GNC, we evaluated a self-administered and self-report questionnaire on infectious diseases and on the use of health care facilities (hereinafter called "ID Screen") for feasibility and validity. METHODS: From August-November 2011, 435 participants between the ages of 20-69 completed the ID Screen. All subjects had been recruited via a random sample from the local residents' registration offices by 4 of the 18 participating study centers. The questionnaire encompasses 77 variables in six sections assessing items such as 12-month prevalence of infections, cumulative prevalence of infectious diseases, visit of health care facilities and vaccination. The feasibility was amongst others evaluated by assessing the completeness and comprehensiveness of the questionnaire. To assess the questionnaires ability to measure "immune status" and "susceptibility to infections", multivariate analysis was used. RESULTS: The overall practicability was good and most items were well understood, demonstrated by < 2/33 missing questions per questionnaire and only three variables: vaccination for influenza and pneumococci and infection with chickenpox had a frequency > 5 % of missing values. However, direct comparison of the items 12-month prevalence and lifetime prevalence of nephritis/pyelitis showed poor agreement and thereby poor understanding by 80 % of the participants, illustrating the necessity for a clear, lay person appropriate description of rare diseases to increase comprehensibility. The questionnaire will be used to support the assessment of immune dysfunction and frequency of infection. An analysis of these constructs in an exploratory factor analysis revealed limited applicability due to low interitem correlation (Cronbach's α < 0.5). This is corroborated by the extraction of more than one factor with a Kaiser-Meyer-Olkin measure of 0.6 instead of a unidimensional latent construct for "immune status". CONCLUSION: All in all, the ID Screen is a good and reliable tool to measure infectious diseases as risk factors and outcome in general, but requires a better translation of infection specific terms into lay person terms. For the assessment of the overall immune status, the tool has strong limitations. Vaccinations status should also rather be assessed based on vaccination certificates than on participants' recall.


Subject(s)
Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Population Surveillance/methods , Risk Assessment/methods , Surveys and Questionnaires , Adult , Aged , Cohort Studies , Communicable Diseases/immunology , Feasibility Studies , Germany/epidemiology , Humans , Immunocompromised Host/immunology , Male , Middle Aged , Prevalence , Reproducibility of Results , Sensitivity and Specificity , Young Adult
18.
Hum Mutat ; 34(1): 122-31, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22833538

ABSTRACT

Caspase-1 (Interleukin-1 Converting Enzyme, ICE) is a proinflammatory enzyme that plays pivotal roles in innate immunity and many inflammatory conditions such as periodic fever syndromes and gout. Inflammation is often mediated by enzymatic activation of interleukin (IL)-1ß and IL-18. We detected seven naturally occurring human CASP1 variants with different effects on protein structure, expression, and enzymatic activity. Most mutations destabilized the caspase-1 dimer interface as revealed by crystal structure analysis and homology modeling followed by molecular dynamics simulations. All variants demonstrated decreased or absent enzymatic and IL-1ß releasing activity in vitro, in a cell transfection model, and as low as 25% of normal ex vivo in a whole blood assay of samples taken from subjects with variant CASP1, a subset of whom suffered from unclassified autoinflammation. We conclude that decreased enzymatic activity of caspase-1 is compatible with normal life and does not prevent moderate and severe autoinflammation.


Subject(s)
Caspase 1/genetics , Caspase 1/metabolism , Genetic Variation , Interleukin-1beta/metabolism , Biocatalysis , Caspase 1/chemistry , Cell Line , Crystallography, X-Ray , Cytokines/blood , Cytokines/metabolism , DNA Mutational Analysis , Genetic Predisposition to Disease/genetics , HEK293 Cells , Humans , Inflammation/enzymology , Inflammation/genetics , Models, Molecular , Mutation , Protein Multimerization , Protein Structure, Tertiary
19.
BMC Microbiol ; 13: 293, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24341411

ABSTRACT

BACKGROUND: Investigating the host response in the early stage of influenza A virus (IAV) infection is of considerable interest. However, it is conceivable that effects due to the anesthesia and/or intranasal infection procedure might introduce artifacts. We therefore aimed to evaluate the effects of anesthesia and/or intranasal infection on transcription of selected pulmonary mRNAs in two inbred mouse strains with differential susceptibility to IAV infection. RESULTS: DBA/2J and C57BL/6J mice were evaluated in a time course experiment in which lung tissue was sampled after 6, 12, 18, 24, 48 and 120 h. After anesthesia with ketamine and xylazine, a suspension of mouse-adapted IAV strain PR8_Mun in 20 µl sterile buffer, or 20 µl sterile buffer only, was instilled intranasally. The mice receiving anesthesia and PBS only were designated the "mock treatment" group. Pulmonary expression of 10 host mRNAs (Fos, Retnla, Irg1, Il6, Il1b, Cxcl10, Stat1, Ifng, Ifnl2, and Mx1) and viral hemagglutinin (HA) mRNA were determined at the designated time points. As expected, weight loss and viral replication were greater in the DBA/2J strain (which is more susceptible to IAV infection). Four mRNAs (Retnla, Irg1, Il6, and Cxcl10) were procedure-dependently regulated in DBA/2J mice between 6 and 24 h, and two (Retnla and Il6) in C57BL/6J mice, although to a lesser extent. All 10 mRNAs rose after infection, but one (Fos) only in DBA/2J mice. These infection-dependent effects could be separated from procedure-dependent effects beginning around 12 h in DBA/2J and 18 h in C57BL/6J mice. The interferon-related mRNAs Stat1, Ifng, Infl2, and Mx1 were unaffected by mock treatment in either mouse strain. Mx1 and Infl2 correlated best with HA mRNA expression (r = 0.97 and 0.93, respectively, in DBA/2J). CONCLUSIONS: These results demonstrate effects of the anesthesia and/or intranasal infection procedure on pulmonary gene expression, which are detectable between approximately 6 and 24 h post procedure and vary in intensity and temporal evolution depending on the mouse strain used. Mock infection controls should be included in all studies on pulmonary gene expression in the early phase of infection with IAV and, likely, other respiratory pathogens.


Subject(s)
Gene Expression Regulation , Host-Pathogen Interactions , Influenza A virus/physiology , Lung/pathology , Lung/virology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Animals , Body Weight , Disease Models, Animal , Female , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Time Factors , Viral Load
20.
Sci Rep ; 13(1): 10360, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365251

ABSTRACT

cis-Aconitate decarboxylase (ACOD1, IRG1) converts cis-aconitate to the immunomodulatory and antibacterial metabolite itaconate. Although the active site residues of human and mouse ACOD1 are identical, the mouse enzyme is about fivefold more active. Aiming to identify the cause of this difference, we mutated positions near the active site in human ACOD1 to the corresponding residues of mouse ACOD1 and measured resulting activities in vitro and in transfected cells. Interestingly, Homo sapiens is the only species with methionine instead of isoleucine at residue 154 and introduction of isoleucine at this position increased the activity of human ACOD1 1.5-fold in transfected cells and 3.5-fold in vitro. Enzyme activity of gorilla ACOD1, which is almost identical to the human enzyme but has isoleucine at residue 154, was similar to the mouse enzyme in vitro. Met154 in human ACOD1 forms a sulfur-π bond to Phe381, which is positioned to impede access of the substrate to the active site. It appears that the ACOD1 sequence has changed at position 154 during human evolution, resulting in a pronounced decrease in activity. This change might have offered a selective advantage in diseases such as cancer.


Subject(s)
Amino Acids , Carboxy-Lyases , Isoleucine , Animals , Humans , Mice , Catalytic Domain , Carboxy-Lyases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL