Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cell ; 181(5): 1016-1035.e19, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32413319

ABSTRACT

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) inĀ vitro using airway epithelial cells and extend our findings to inĀ vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.


Subject(s)
Alveolar Epithelial Cells/metabolism , Enterocytes/metabolism , Goblet Cells/metabolism , Interferon Type I/metabolism , Nasal Mucosa/cytology , Peptidyl-Dipeptidase A/genetics , Adolescent , Alveolar Epithelial Cells/immunology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/physiology , COVID-19 , Cell Line , Cells, Cultured , Child , Coronavirus Infections/virology , Enterocytes/immunology , Goblet Cells/immunology , HIV Infections/immunology , Humans , Influenza, Human/immunology , Interferon Type I/immunology , Lung/cytology , Lung/pathology , Macaca mulatta , Mice , Mycobacterium tuberculosis , Nasal Mucosa/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptors, Virus/genetics , SARS-CoV-2 , Serine Endopeptidases/metabolism , Single-Cell Analysis , Tuberculosis/immunology , Up-Regulation
2.
Nature ; 589(7842): 376-380, 2021 01.
Article in English | MEDLINE | ID: mdl-33473226

ABSTRACT

Topological crystalline insulators (TCIs) can exhibit unusual, quantized electric phenomena such as fractional electric polarization and boundary-localized fractional charge1-6. This quantized fractional charge is the generic observable for identification of TCIs that lack clear spectral features5-7, including ones with higher-order topology8-11. It has been predicted that fractional charges can also manifest where crystallographic defects disrupt the lattice structure of TCIs, potentially providing a bulk probe of crystalline topology10,12-14. However, this capability has not yet been confirmed in experiments, given that measurements of charge distributions in TCIs have not been accessible until recently11. Here we experimentally demonstrate that disclination defects can robustly trap fractional charges in TCI metamaterials, and show that this trapped charge can indicate non-trivial, higher-order crystalline topology even in the absence of any spectral signatures. Furthermore, we uncover a connection between the trapped charge and the existence of topological bound states localized at these defects. We test the robustness of these topological features when the protective crystalline symmetry is broken, and find that a single robust bound state can be localized at each disclination alongside the fractional charge. Our results conclusively show that disclination defects in TCIs can strongly trap fractional charges as well as topological bound states, and demonstrate the primacy of fractional charge as a probe of crystalline topology.

3.
Mol Ther ; 32(4): 1000-1015, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38414243

ABSTRACT

Adoptive cell therapy (ACT) using TĀ cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of inĀ vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing TĀ cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ TĀ cells. We observed limited persistence and expansion of anti-HIV CAR TĀ cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR TĀ cells inĀ vivo. We observed CAR-expressing TĀ cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR TĀ cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.


Subject(s)
HIV Infections , HIV-1 , Receptors, Chimeric Antigen , Mice , Animals , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Hematopoietic Stem Cells , Immunotherapy, Adoptive
4.
Mol Ther ; 32(5): 1238-1251, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38414244

ABSTRACT

Chimeric antigen receptor (CAR) TĀ cell therapies have demonstrated immense clinical success for B cell and plasma cell malignancies. We tested their impact on the viral reservoir in a macaque model of HIV persistence, comparing the functions of CD20 CAR TĀ cells between animals infected with simian/human immunodeficiency virus (SHIV) and uninfected controls. We focused on the potential of this approach to disrupt B cell follicles (BCFs), exposing infected cells for immune clearance. In SHIV-infected animals, CAR TĀ cells were highly functional, with rapid expansion and trafficking to tissue-associated viral sanctuaries, including BCFs and gut-associated lymphoid tissue (GALT). CD20 CAR TĀ cells potently ablated BCFs and depleted lymph-node-associated follicular helper T (TFH) cells, with complete restoration of BCF architecture and TFH cells following CAR TĀ cell contraction. BCF ablation decreased the splenic SHIV reservoir but was insufficient for effective reductions in systemic viral reservoirs. Although associated with moderate hematologic toxicity, CD20 CAR TĀ cells were well tolerated in SHIV-infected and control animals, supporting the feasibility of this therapy in people living with HIV with underlying B cell malignancies. Our findings highlight the unique ability of CD20 CAR TĀ cells to safely and reversibly unmask TFH cells within BCF sanctuaries, informing future combinatorial HIV cure strategies designed to augment antiviral efficacy.


Subject(s)
Antigens, CD20 , B-Lymphocytes , Disease Models, Animal , HIV Infections , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Antigens, CD20/metabolism , Antigens, CD20/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Simian Immunodeficiency Virus/immunology , Immunotherapy, Adoptive/methods , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , HIV Infections/therapy , HIV Infections/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , HIV-1/immunology , Viral Load , Macaca mulatta
5.
Nature ; 555(7696): 346-350, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29542690

ABSTRACT

The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials-a quantized quadrupole topological insulator-produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

6.
Mol Ther ; 31(4): 1059-1073, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36760126

ABSTRACT

We aim to develop an inĀ vivo hematopoietic stem cell (HSC) gene therapy approach for persistent control/protection of HIV-1 infection based on the stable expression of a secreted decoy protein for HIV receptors CD4 and CCR5 (eCD4-Ig) from blood cells. HSCs in mice and a rhesus macaque were mobilized from the bone marrow and transduced by an intravenous injection of HSC-tropic, integrating HDAd5/35++ vectors expressing rhesus eCD4-Ig. InĀ vivo HSC transduction/selection resulted in stable serum eCD4-Ig levels of Ć¢ĀˆĀ¼100Ā Āµg/mL (mice) and >20Ā Āµg/mL (rhesus) with half maximal inhibitory concentrations (IC50s) of 1Ā Āµg/mL measured by an HIV neutralization assay. After simian-human-immunodeficiency virus D (SHIV.D) challenge of rhesus macaques injected with HDAd-eCD4-Ig or a control HDAd5/35++ vector, peak plasma viral load levels were Ć¢ĀˆĀ¼50-fold lower in the eCD4-Ig-expressing animal. Furthermore, the viral load was lower in tissues with the highest eCD4-Ig expression, specifically the spleen and lymph nodes. SHIV.D challenge triggered a selective expansion of transduced CD4+CCR5+ cells, thereby increasing serum eCD4-Ig levels. The latter, however, broke immune tolerance and triggered anti-eCD4-Ig antibody responses, which could have contributed to the inability to eliminate SHIV.D. Our data will guide us in the improvement of the inĀ vivo approach. Clearly, our conclusions need to be validated in larger animal cohorts.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Humans , Animals , Mice , Macaca mulatta , Simian Immunodeficiency Virus/genetics , Hematopoietic Stem Cells , Simian Acquired Immunodeficiency Syndrome/therapy
7.
Blood ; 136(15): 1722-1734, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32614969

ABSTRACT

Chimeric antigen receptor (CAR) T cells targeting CD19+ hematologic malignancies have rapidly emerged as a promising, novel therapy. In contrast, results from the few CAR T-cell studies for infectious diseases such as HIV-1 have been less convincing. These challenges are likely due to the low level of antigen present in antiretroviral therapy (ART)-suppressed patients in contrast to those with hematologic malignancies. Using our well-established nonhuman primate model of ART-suppressed HIV-1 infection, we tested strategies to overcome these limitations and challenges. We first optimized CAR T-cell production to maintain central memory subsets, consistent with current clinical paradigms. We hypothesized that additional exogenous antigen might be required in an ART-suppressed setting to aid expansion and persistence of CAR T cells. Thus, we studied 4 simian/HIV-infected, ART-suppressed rhesus macaques infused with virus-specific CD4CAR T cells, followed by supplemental infusion of cell-associated HIV-1 envelope (Env). Env boosting led to significant and unprecedented expansion of virus-specific CAR+ T cells in vivo; after ART treatment interruption, viral rebound was significantly delayed compared with controls (P = .014). In 2 animals with declining CAR T cells, rhesusized anti-programmed cell death protein 1 (PD-1) antibody was administered to reverse PD-1-dependent immune exhaustion. Immune checkpoint blockade triggered expansion of exhausted CAR T cells and concordantly lowered viral loads to undetectable levels. These results show that supplemental cell-associated antigen enables robust expansion of CAR T cells in an antigen-sparse environment. To our knowledge, this is the first study to show expansion of virus-specific CAR T cells in infected, suppressed hosts, and delay/control of viral recrudescence.


Subject(s)
Antigens, Viral/immunology , HIV Infections/immunology , HIV-1/immunology , Immunocompromised Host , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antiretroviral Therapy, Highly Active/adverse effects , Antiretroviral Therapy, Highly Active/methods , Disease Models, Animal , HIV Infections/drug therapy , HIV Infections/virology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , Macaca mulatta , Simian Immunodeficiency Virus/immunology , T-Lymphocytes/drug effects
8.
Mol Ther ; 29(11): 3140-3152, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34601132

ABSTRACT

Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.


Subject(s)
CRISPR-Cas Systems , Disease Models, Animal , Gene Editing , Genetic Therapy , Animals , Clinical Studies as Topic , Gene Transfer Techniques , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/therapy , Genetic Therapy/methods , Genetic Therapy/trends , Genetic Vectors/genetics , Humans
9.
PLoS Pathog ; 14(4): e1006956, 2018 04.
Article in English | MEDLINE | ID: mdl-29672640

ABSTRACT

Autologous transplantation and engraftment of HIV-resistant cells in sufficient numbers should recapitulate the functional cure of the Berlin Patient, with applicability to a greater number of infected individuals and with a superior safety profile. A robust preclinical model of suppressed HIV infection is critical in order to test such gene therapy-based cure strategies, both alone and in combination with other cure strategies. Here, we present a nonhuman primate (NHP) model of latent infection using simian/human immunodeficiency virus (SHIV) and combination antiretroviral therapy (cART) in pigtail macaques. We demonstrate that transplantation of CCR5 gene-edited hematopoietic stem/progenitor cells (HSPCs) persist in infected and suppressed animals, and that protected cells expand through virus-dependent positive selection. CCR5 gene-edited cells are readily detectable in tissues, namely those closely associated with viral reservoirs such as lymph nodes and gastrointestinal tract. Following autologous transplantation, tissue-associated SHIV DNA and RNA levels in suppressed animals are significantly reduced (p ≤ 0.05), relative to suppressed, untransplanted control animals. In contrast, the size of the peripheral reservoir, measured by QVOA, is variably impacted by transplantation. Our studies demonstrate that CCR5 gene editing is equally feasible in infected and uninfected animals, that edited cells persist, traffic to, and engraft in tissue reservoirs, and that this approach significantly reduces secondary lymphoid tissue viral reservoir size. Our robust NHP model of HIV gene therapy and viral persistence can be immediately applied to the investigation of combinatorial approaches that incorporate anti-HIV gene therapy, immune modulators, therapeutic vaccination, and latency reversing agents.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Receptors, CCR5/genetics , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Immunodeficiency Virus/physiology , Viral Load/physiology , Animals , Anti-Retroviral Agents/therapeutic use , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Macaca nemestrina , Male , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Transplantation, Autologous , Virus Latency , Virus Replication
11.
Mol Ther ; 27(1): 164-177, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30391142

ABSTRACT

Broadly neutralizing antibodies (bNAbs) are among the most promising strategies to achieve long-term control of HIV-1 in the absence of combination antiretroviral therapy. Passive administration of such antibodies in patients efficiently decreases HIV-1 viremia, but is limited by the serum half-life of the protein. Here, we investigated whether antibody-secreting hematopoietic cells could overcome this problem. We genetically modified human CD34+ hematopoietic stem and progenitor cells (HSPCs) to secrete bNAbs and transplanted them into immunodeficient mice. We found that the gene-modified cells engraft and stably secrete antibodies in the peripheral blood of the animals for the 9Ā months of the study. Antibodies were predominantly expressed by human HSPC-derived T- and B cells. Importantly, we found that secreted PGT128 was able to delay HIV-1 viremia inĀ vivo and also prevent a decline in CD4+ cells. Gene-modified cells were maintained in bone marrow and were also detected in spleen, thymus, lymph nodes, and gut-associated lymphoid tissue. These data indicate that the bNAb secretion from HSPC-derived cells in mice is functional and can affect viral infection and CD4+ cell maintenance. This study paves the way for potential applications to other diseases requiring long-lasting protein or antibody delivery.


Subject(s)
Antibodies, Neutralizing/metabolism , Hematopoietic Stem Cells/metabolism , Animals , Animals, Newborn , Antigens, CD34/metabolism , B-Lymphocytes/metabolism , HIV Infections/immunology , HIV Infections/metabolism , Humans , Leukocyte Common Antigens/metabolism , Liver/metabolism , Lymphoid Tissue/metabolism , Mice , RNA, Viral/genetics , RNA, Viral/metabolism , T-Lymphocytes/metabolism , Viral Load , Viremia/genetics , Viremia/metabolism
12.
PLoS Pathog ; 13(12): e1006753, 2017 12.
Article in English | MEDLINE | ID: mdl-29284044

ABSTRACT

Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy for various forms of cancer and show promise in treating HIV-1 infection. However, significant limitations are persistence and whether peripheral T cell-based products can respond to malignant or infected cells that may reappear months or years after treatment remains unclear. Hematopoietic Stem/Progenitor Cells (HSPCs) are capable of long-term engraftment and have the potential to overcome these limitations. Here, we report the use of a protective CD4 chimeric antigen receptor (C46CD4CAR) to redirect HSPC-derived T-cells against simian/human immunodeficiency virus (SHIV) infection in pigtail macaques. CAR-containing cells persisted for more than 2 years without any measurable toxicity and were capable of multilineage engraftment. Combination antiretroviral therapy (cART) treatment followed by cART withdrawal resulted in lower viral rebound in CAR animals relative to controls, and demonstrated an immune memory-like response. We found CAR-expressing cells in multiple lymphoid tissues, decreased tissue-associated SHIV RNA levels, and substantially higher CD4/CD8 ratios in the gut as compared to controls. These results show that HSPC-derived CAR T-cells are capable of long-term engraftment and immune surveillance. This study demonstrates for the first time the safety and feasibility of HSPC-based CAR therapy in a large animal preclinical model.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/therapy , Hematopoietic Stem Cells/immunology , Receptors, Antigen, T-Cell/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Animals , CD4-Positive T-Lymphocytes/transplantation , Cell Differentiation/immunology , Cell Lineage/immunology , Disease Models, Animal , Genetic Therapy/methods , HIV Infections/virology , Hematopoietic Stem Cell Transplantation/methods , Immunotherapy/methods , Macaca nemestrina , Male , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/virology
13.
Curr Top Microbiol Immunol ; 417: 211-248, 2018.
Article in English | MEDLINE | ID: mdl-29256135

ABSTRACT

As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective "offensive" and "defensive" approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Genetic Therapy/methods , HIV Infections/immunology , HIV Infections/therapy , Animals , HIV Infections/genetics , HIV Infections/virology , HIV-1/immunology , HIV-1/pathogenicity , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
14.
Phys Rev Lett ; 123(6): 063901, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31491144

ABSTRACT

We study nonreciprocity in spatiotemporally modulated 1D resonator chains from the perspective of equivalent 2D resonator arrays with a synthetic dimension and transverse synthetic electric and magnetic fields. The synthetic fields are respectively related to temporal and spatial modulation of the resonator chain, and we show that their combination can induce strong transmission nonreciprocity, i.e., complete isolation with only a weak perturbative modulation. This nonreciprocal effect is analogous to the Hall effect for charged particles. We experimentally implement chains of two and three spatiotemporally modulated resonators and measure over 58Ā dB of isolation contrast.

16.
J Virol ; 91(13)2017 07 01.
Article in English | MEDLINE | ID: mdl-28404854

ABSTRACT

Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient.IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation.


Subject(s)
Adaptive Immunity , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Stem Cell Transplantation , Transplantation, Autologous , Viremia/immunology , Animals , Anti-Retroviral Agents/therapeutic use , Macaca , Models, Theoretical , Simian Acquired Immunodeficiency Syndrome/drug therapy
17.
Blood ; 127(20): 2416-26, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26980728

ABSTRACT

Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well.


Subject(s)
Bone Marrow Transplantation , Cell Lineage , Gene Editing , Hematopoietic Stem Cell Transplantation , Macaca nemestrina/genetics , Receptors, CCR5/genetics , Amino Acid Sequence , Animals , Cell Line , Electroporation , Feasibility Studies , Gene Knockdown Techniques , Graft Survival , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Molecular Sequence Data , Mutation , Polymerase Chain Reaction/methods , RNA, Messenger/genetics , Receptors, CCR5/deficiency , Sequence Analysis, DNA , Transplantation Conditioning , Transplantation, Autologous , Whole-Body Irradiation , Zinc Fingers
18.
Cytotherapy ; 19(11): 1325-1338, 2017 11.
Article in English | MEDLINE | ID: mdl-28751153

ABSTRACT

Human immunodeficiency virus (HIV) was first reported and characterized more than three decades ago. Once thought of as a death sentence, HIV infection has become a chronically manageable disease. However, it is estimated that a staggering 0.8% of the world's population is infected with HIV, with more than 1 million deaths reported in 2015 alone. Despite the development of effective anti-retroviral drugs, a permanent cure has only been documented in one patient to date. In 2007, an HIV-positive patient received a bone marrow transplant to treat his leukemia from an individual who was homozygous for a mutation in the CCR5 gene. This mutation, known as CCR5Δ32, prevents HIV replication by inhibiting the early stage of viral entry into cells, resulting in resistance to infection from the majority of HIV isolates. More than 10 years after his last dose of anti-retroviral therapy, the transplant recipient remains free of replication-competent virus. Multiple groups are now attempting to replicate this success through the use of other CCR5-negative donor cell sources. Additionally, developments in the use of lentiviral vectors and targeted nucleases have opened the doors of precision medicine and enabled new treatment methodologies to combat HIV infection through targeted ablation or down-regulation of CCR5 expression. Here, we review historical cases of CCR5-edited cell-based therapies, current clinical trials and future benefits and challenges associated with this technology.


Subject(s)
Bone Marrow Transplantation/methods , Gene Editing/methods , HIV Infections/therapy , Receptors, CCR5/genetics , Animals , Clinical Trials as Topic , Fetal Blood/cytology , Genetic Vectors , HIV-1/pathogenicity , Humans , Lentivirus/genetics , Mutation , Transplantation, Homologous/methods , Treatment Outcome
19.
Mol Ther ; 23(5): 943-951, 2015 May.
Article in English | MEDLINE | ID: mdl-25648264

ABSTRACT

Recent studies have demonstrated that genetically modified hematopoietic stem cells (HSCs) can reduce HIV viremia. We have developed an HIV/AIDS-patient model in Simian/human immunodeficiency virus (SHIV)-infected pigtailed macaques that are stably suppressed on antiretroviral therapy (ART: raltegravir, emtricitabine and tenofovir). Following SHIV infection and ART, animals undergo autologous HSC transplantation (HSCT) with lentivirally transduced cluster of differentiation (CD)34(+) cells expressing the mC46 anti-HIV fusion protein. We show that SHIV(+), ART-treated animals had very low gene marking levels after HSCT. Pretransduction CD34(+) cells contained detectable levels of all three ART drugs, likely contributing to the low gene transfer efficiency. Following HSCT recovery and the cessation of ART, plasma viremia rebounded, indicating that myeloablative total body irradiation cannot completely eliminate viral reservoirs after autologous HSCT. The kinetics of recovery following autologous HSCT in SHIV(+), ART-treated macaques paralleled those observed following transplantation of control animals. However, T-cell subset analyses demonstrated a high percentage of C-C chemokine receptor 5 (CCR5)-expressing CD4(+) T-cells after HSCT. These data suggest that an extended ART interruption time may be required for more efficient lentiviral transduction. To avoid complications associated with ART interruption in the context of high percentages of CD4(+)CCR5(+)T-cells after HSCT, the use of vector systems not impaired by the presence of residual ART may also be beneficial.


Subject(s)
Antiretroviral Therapy, Highly Active , Genetic Therapy , Genetic Vectors/genetics , Hematopoietic Stem Cells/metabolism , Lentivirus/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Transduction, Genetic , Animals , Gene Expression , Hematopoietic Stem Cell Transplantation , Immunophenotyping , Lymphocyte Count , Macaca nemestrina , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Acquired Immunodeficiency Syndrome/virology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/radiation effects , T-Lymphocyte Subsets/virology , Transgenes , Transplantation Conditioning , Viral Load
20.
Blood ; 122(2): 179-87, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23719296

ABSTRACT

Despite continued progress in the development of novel antiretroviral therapies, it has become increasingly evident that drug-based treatments will not lead to a functional or sterilizing cure for HIV(+) patients. In 2009, an HIV(+) patient was effectively cured of HIV following allogeneic transplantation of hematopoietic stem cells (HSCs) from a CCR5(-/-) donor. The utility of this approach, however, is severely limited because of the difficulty in finding matched donors. Hence, we studied the potential of HIV-resistant stem cells in the autologous setting in a nonhuman primate AIDS model and incorporated a fusion inhibitor (mC46) as the means for developing infection-resistant cells. Pigtail macaques underwent identical transplants and Simian-Human Immunodeficiency Virus (SHIV) challenge procedures with the only variation between control and mC46 macaques being the inclusion of a fusion-inhibitor expression cassette. Following SHIV challenge, mC46 macaques, but not control macaques, showed a positive selection of gene-modified CD4(+) T cells in peripheral blood, gastrointestinal tract, and lymph nodes, accounting for >90% of the total CD4(+) T-cell population. mC46 macaques also maintained high frequencies of SHIV-specific, gene-modified CD4(+) T cells, an increase in nonmodified CD4(+) T cells, enhanced cytotoxic T lymphocyte function, and antibody responses. These data suggest that HSC protection may be a potential alternative to conventional antiretroviral therapy in patients with HIV/AIDS.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Recombinant Fusion Proteins/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antigens, Viral/immunology , B-Lymphocytes/immunology , CD4 Lymphocyte Count , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/virology , Cell- and Tissue-Based Therapy , Gene Expression , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Macaca nemestrina , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load , Viremia/immunology , Viremia/virology
SELECTION OF CITATIONS
SEARCH DETAIL