Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Nature ; 612(7941): 758-763, 2022 12.
Article in English | MEDLINE | ID: mdl-36517603

ABSTRACT

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.


Subject(s)
Autopsy , Brain , COVID-19 , Organ Specificity , SARS-CoV-2 , Humans , Brain/virology , COVID-19/virology , RNA, Viral/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Virus Replication , Time Factors , Respiratory System/pathology , Respiratory System/virology
2.
PLoS Pathog ; 18(3): e1010384, 2022 03.
Article in English | MEDLINE | ID: mdl-35245345

ABSTRACT

The California serogroup (CSG) of Orthobunyaviruses comprises several members capable of causing neuroinvasive disease in humans, including La Crosse orthobunyavirus (LACV), Jamestown Canyon orthobunyavirus (JCV), and Inkoo orthobunyavirus (INKV). Despite being genetically and serologically closely related, their disease incidences and pathogenesis in humans and mice differ. We have previously shown that following intraperitoneal inoculation of weanling mice, LACV was highly pathogenic while JCV and INKV were not. To determine why there were differences, we examined the ability of these viruses to invade the CNS and compared the host innate immune responses that regulated viral pathogenesis. We found that LACV was always neuroinvasive, which correlated with its high level of neuroinvasive disease. Interestingly, JCV was not neuroinvasive in any mice, while INKV was neuroinvasive in most mice. The type I interferon (IFN) response was critical for protecting mice from both JCV and INKV disease, although in the periphery JCV induced little IFN expression, while INKV induced high IFN expression. Despite their differing neuroinvasive abilities, JCV and INKV shared innate signaling components required for protection. The presence of either cytoplasmic Rig-I-Like Receptor signaling or endosomal Toll-Like Receptor signaling was sufficient to protect mice from JCV or INKV, however, inhibition of both pathways rendered mice highly susceptible to neurological disease. Comparison of IFN and IFN-stimulated gene (ISG) responses to INKV in the brains of resistant wild type (WT) mice and susceptible immune knockout mice showed similar IFN responses in the brain, but WT mice had higher ISG responses, suggesting induction of key ISGs in the brain is critical for protection of mice from INKV. Overall, these results show that the CSG viruses differ in neuroinvasiveness, which can be independent from their neuropathogenicity. The type I IFN response was crucial for protecting mice from CSG virus-induced neurological disease, however, the exact correlates of protection appear to vary between CSG viruses.


Subject(s)
Encephalitis Virus, California , Encephalitis, California , Orthobunyavirus , Animals , Disease Susceptibility , Encephalitis Virus, California/genetics , Immunity, Innate , Mice , Orthobunyavirus/genetics , Serogroup
3.
Immunity ; 38(4): 705-16, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23499490

ABSTRACT

La Crosse virus (LACV), a zoonotic Bunyavirus, is a major cause of pediatric viral encephalitis in the United States. A hallmark of neurological diseases caused by LACV and other encephalitic viruses is the induction of neuronal cell death. Innate immune responses have been implicated in neuronal damage, but no mechanism has been elucidated. By using in vitro studies in primary neurons and in vivo studies in mice, we have shown that LACV infection induced the RNA helicase, RIG-I, and mitochondrial antiviral signaling protein (MAVS) signaling pathway, resulting in upregulation of the sterile alpha and TIR-containing motif 1 (SARM1), an adaptor molecule that we found to be directly involved in neuronal damage. SARM1-mediated cell death was associated with induced oxidative stress response and mitochondrial damage. These studies provide an innate-immune signaling mechanism for virus-induced neuronal death and reveal potential targets for development of therapeutics to treat encephalitic viral infections.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/metabolism , Encephalitis, California/immunology , La Crosse virus/immunology , Mitochondria/metabolism , Neurons/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Armadillo Domain Proteins/genetics , Cells, Cultured , Cytoskeletal Proteins/genetics , Encephalitis, California/complications , Encephalitis, California/drug therapy , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Neurons/virology , Oxidative Stress , Primary Cell Culture , Signal Transduction/immunology , Up-Regulation
4.
J Immunol ; 205(1): 143-152, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32493813

ABSTRACT

The ability of Zika virus (ZIKV) to cross the placenta and infect the fetus is a key mechanism by which ZIKV causes microcephaly. How the virus crosses the placenta and the role of the immune response in this process remain unclear. In the current study, we examined how ZIKV infection affected innate immune cells within the placenta and fetus and whether these cells influenced virus vertical transmission (VTx). We found myeloid cells were elevated in the placenta of pregnant ZIKV-infected Rag1-/- mice treated with an anti-IFNAR Ab, primarily at the end of pregnancy as well as transiently in the fetus several days before birth. These cells, which included maternal monocyte/macrophages, neutrophils, and fetal myeloid cells contained viral RNA and infectious virus, suggesting they may be infected and contributing to viral replication and VTx. However, depletion of monocyte/macrophage myeloid cells from the dam during ZIKV infection resulted in increased ZIKV infection in the fetus. Myeloid cells in the fetus were not depleted in this experiment, likely because of an inability of liposome particles containing the cytotoxic drug to cross the placenta. Thus, the increased virus infection in the fetus was not the result of an impaired fetal myeloid response or breakdown of the placental barrier. Collectively, these data suggest that monocyte/macrophage myeloid cells in the placenta play a significant role in inhibiting ZIKV VTx to the fetus, possibly through phagocytosis of virus or virus-infected cells.


Subject(s)
Infectious Disease Transmission, Vertical , Macrophages/immunology , Monocytes/immunology , Placenta/immunology , Pregnancy Complications, Infectious/immunology , Zika Virus Infection/immunology , Animals , Disease Models, Animal , Female , Homeodomain Proteins/genetics , Humans , Mice , Mice, Knockout , Placenta/cytology , Pregnancy , Pregnancy Complications, Infectious/virology , RNA, Viral/isolation & purification , Zika Virus/genetics , Zika Virus/immunology , Zika Virus Infection/transmission , Zika Virus Infection/virology
5.
J Neuroinflammation ; 18(1): 125, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34082753

ABSTRACT

BACKGROUND: A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6-8 weeks. Thus, we studied age-specific differences in the response of brain capillary endothelial cells (BCECs) to LACV infection. METHODS: To examine mechanisms of LACV-induced BBB breakdown and infection of the CNS, we analyzed BCECs directly isolated from weanling and adult mice as well as established a model where these cells were infected in vitro and cultured for a short period to determine susceptibility to virus infection and cell death. Additionally, we utilized correlative light electron microscopy (CLEM) to examine whether changes in cell morphology and function were also observed in BCECs in vivo. RESULTS: BCECs from weanling, but not adult mice, had detectable infection after several days in culture when taken ex vivo from infected mice suggesting that these cells could be infected in vitro. Further analysis of BCECs from uninfected mice, infected in vitro, showed that weanling BCECs were more susceptible to virus infection than adult BCECs, with higher levels of infected cells, released virus as well as cytopathic effects (CPE) and cell death. Although direct LACV infection is not detected in the weanling BCECs, CLEM analysis of brain tissue from weanling mice indicated that LACV infection induced significant cerebrovascular damage which allowed virus-sized particles to enter the brain parenchyma. CONCLUSIONS: These findings indicate that BCECs isolated from adult and weanling mice have differential viral load, infectivity, and susceptibility to LACV. These age-related differences in susceptibility may strongly influence LACV-induced BBB leakage and neurovascular damage allowing virus invasion of the CNS and the development of neurological disease.


Subject(s)
Aging , Blood-Brain Barrier/virology , Capillaries/virology , Cell Death , Encephalitis, California/virology , Endothelial Cells/pathology , Endothelial Cells/virology , La Crosse virus/physiology , Animals , Animals, Newborn , Blood-Brain Barrier/physiopathology , Brain/blood supply , Brain/pathology , Brain/virology , Capillaries/pathology , Caspase 3/physiology , Cell Culture Techniques , Disease Models, Animal , Encephalitis, California/pathology , Encephalitis, California/physiopathology , Mice , Mice, Inbred C57BL , Microscopy, Electron , Viral Plaque Assay
6.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502092

ABSTRACT

Arthropod-borne viruses, referred to collectively as arboviruses, infect millions of people worldwide each year and have the potential to cause severe disease. They are predominately transmitted to humans through blood-feeding behavior of three main groups of biting arthropods: ticks, mosquitoes, and sandflies. The pathogens harbored by these blood-feeding arthropods (BFA) are transferred to animal hosts through deposition of virus-rich saliva into the skin. Sometimes these infections become systemic and can lead to neuro-invasion and life-threatening viral encephalitis. Factors intrinsic to the arboviral vectors can greatly influence the pathogenicity and virulence of infections, with mounting evidence that BFA saliva and salivary proteins can shift the trajectory of viral infection in the host. This review provides an overview of arbovirus infection and ways in which vectors influence viral pathogenesis. In particular, we focus on how saliva and salivary gland extracts from the three dominant arbovirus vectors impact the trajectory of the cellular immune response to arbovirus infection in the skin.


Subject(s)
Arbovirus Infections/transmission , Arboviruses/pathogenicity , Arthropod Vectors/virology , Saliva/virology , Animals , Arthropod Vectors/physiology , Host-Pathogen Interactions , Humans , Saliva/metabolism
7.
J Immunol ; 200(2): 471-476, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29246952

ABSTRACT

Inflammatory monocyte (iMO) recruitment to the brain is a hallmark of many neurologic diseases. Prior to entering the brain, iMOs must egress into the blood from the bone marrow through a mechanism, which for known encephalitic viruses, is CCR2 dependent. In this article, we show that during La Crosse Virus-induced encephalitis, egress of iMOs was surprisingly independent of CCR2, with similar percentages of iMOs in the blood and brain of heterozygous and CCR2-/- mice following infection. Interestingly, CCR2 was required for iMO trafficking from perivascular areas to sites of virus infection within the brain. Thus, CCR2 was not essential for iMO trafficking to the blood or the brain but was essential for trafficking within the brain parenchyma. Analysis of other orthobunyaviruses showed that Jamestown Canyon virus also induced CCR2-independent iMO egress to the blood. These studies demonstrate that the CCR2 requirement for iMO egress to the blood is not universal for all viruses.


Subject(s)
Antigens, Ly/metabolism , Encephalitis, California/immunology , Encephalitis, California/metabolism , La Crosse virus , Monocytes/immunology , Monocytes/metabolism , Receptors, CCR2/metabolism , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Brain/immunology , Brain/metabolism , Brain/pathology , Brain/virology , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Encephalitis, California/virology , Female , Male , Mice , Mice, Transgenic , Monocytes/pathology
8.
Emerg Infect Dis ; 25(4): 728-738, 2019 04.
Article in English | MEDLINE | ID: mdl-30882310

ABSTRACT

The California serogroup of orthobunyaviruses comprises a group of mosquitoborne viruses, including La Crosse (LACV), snowshoe hare (SSHV), Tahyna (TAHV), Jamestown Canyon (JCV), and Inkoo (INKV) viruses, that cause neurologic disease in humans of differing ages with varying incidences. To determine how the pathogenesis of these viruses differs, we compared their ability to induce disease in mice and replicate and induce cell death in vitro. In mice, LACV, TAHV, and SSHV induced neurologic disease after intraperitoneal and intranasal inoculation, and JCV induced disease only after intranasal inoculation. INKV rarely induced disease, which correlated with less viral antigen in the brain than the other viruses. In vitro, all viruses replicated to high titers; however, LACV, SSHV, and TAHV induced high cell death, whereas JCV and INKV did not. Results demonstrated that CSG viruses differ in neuropathogenesis in vitro and in vivo, which correlates with the differences in pathogenesis reported in humans.


Subject(s)
Encephalitis Virus, California/classification , Encephalitis Virus, California/pathogenicity , Encephalitis, California/epidemiology , Encephalitis, California/virology , Age Factors , Animals , Cells, Cultured , Cluster Analysis , Disease Models, Animal , Encephalitis Virus, California/genetics , Encephalitis, California/diagnosis , Genes, Viral , Geography, Medical , Global Health , Humans , Incidence , Mice , Public Health Surveillance , Sequence Analysis, DNA , Serogroup
9.
J Neuroinflammation ; 16(1): 229, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31739796

ABSTRACT

BACKGROUND: La Crosse virus (LACV) is the leading cause of pediatric arboviral encephalitis in the USA. LACV encephalitis can result in learning and memory deficits, which may be due to infection and apoptosis of neurons in the brain. Despite neurons being the primary cell infected in the brain by LACV, little is known about neuronal responses to infection. METHODS: Human cerebral organoids (COs), which contain a spectrum of developing neurons, were used to examine neuronal responses to LACV. Plaque assay and quantitative reverse transcription (qRT) PCR were used to determine the susceptibility of COs to LACV infection. Immunohistochemistry, flow cytometry, and single-cell transcriptomics were used to determine specific neuronal subpopulation responses to the virus. RESULTS: Overall, LACV readily infected COs causing reduced cell viability and increased apoptosis. However, it was determined that neurons at different stages of development had distinct responses to LACV. Both neural progenitors and committed neurons were infected with LACV, however, committed neurons underwent apoptosis at a higher rate. Transcriptomic analysis showed that committed neurons expressed fewer interferon (IFN)-stimulated genes (ISGs) and genes involved IFN signaling in response to infection compared to neural progenitors. Furthermore, induction of interferon signaling in LACV-infected COs by application of recombinant IFN enhanced cell viability. CONCLUSIONS: These findings indicate that neuronal maturation increases the susceptibility of neurons to LACV-induced apoptosis. This susceptibility is likely due, at least in part, to mature neurons being less responsive to virus-induced IFN as evidenced by their poor ISG response to LACV. Furthermore, exogenous administration of recombinant IFN to LACV COs rescued cellular viability suggesting that increased IFN signaling is overall protective in this complex neural tissue. Together these findings indicate that induction of IFN signaling in developing neurons is an important deciding factor in virus-induced cell death.


Subject(s)
Encephalitis, California/immunology , Interferon Type I/immunology , Neural Stem Cells/virology , Neurons/virology , Apoptosis/physiology , Cells, Cultured , Encephalitis, California/pathology , Humans , Induced Pluripotent Stem Cells , Neural Stem Cells/pathology , Neurons/cytology , Neurons/pathology , Organoids
10.
J Immunol ; 198(9): 3526-3535, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28330900

ABSTRACT

The recent association between Zika virus (ZIKV) and neurologic complications, including Guillain-Barré syndrome in adults and CNS abnormalities in fetuses, highlights the importance in understanding the immunological mechanisms controlling this emerging infection. Studies have indicated that ZIKV evades the human type I IFN response, suggesting a role for the adaptive immune response in resolving infection. However, the inability of ZIKV to antagonize the mouse IFN response renders the virus highly susceptible to circulating IFN in murine models. Thus, as we show in this article, although wild-type C57BL/6 mice mount cell-mediated and humoral adaptive immune responses to ZIKV, these responses were not required to prevent disease. However, when the type I IFN response of mice was suppressed, then the adaptive immune responses became critical. For example, when type I IFN signaling was blocked by Abs in Rag1-/- mice, the mice showed dramatic weight loss and ZIKV infection in the brain and testes. This phenotype was not observed in Ig-treated Rag1-/- mice or wild-type mice treated with anti-type I IFNR alone. Furthermore, we found that the CD8+ T cell responses of pregnant mice to ZIKV infection were diminished compared with nonpregnant mice. It is possible that diminished cell-mediated immunity during pregnancy could increase virus spread to the fetus. These results demonstrate an important role for the adaptive immune response in the control of ZIKV infection and imply that vaccination may prevent ZIKV-related disease, particularly when the type I IFN response is suppressed as it is in humans.


Subject(s)
Adaptive Immunity , Brain/virology , CD8-Positive T-Lymphocytes/virology , Pregnancy Complications, Infectious/immunology , Testis/virology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Blocking/administration & dosage , Brain/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Homeodomain Proteins/genetics , Humans , Immune Evasion , Interferon Type I/immunology , Interferon Type I/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy/immunology , Testis/immunology , Zika Virus Infection/epidemiology
11.
Immunology ; 153(4): 443-454, 2018 04.
Article in English | MEDLINE | ID: mdl-29266213

ABSTRACT

Zika virus (ZIKV) is responsible for a recent global epidemic that has been associated with congenital brain malformations in fetuses and with Guillain-Barré syndrome in adults. Within the last 2 years, a major effort has been made to develop murine models to study the mechanism of viral transmission, pathogenesis and the host immune response. Here, we discuss the findings from these models regarding the role that the innate and adaptive immune responses have in controlling ZIKV infection and pathogenesis. Additionally, we examine how innate and adaptive immune responses influence sexual and vertical transmission of ZIKV infection as well as how these responses can influence the ability of ZIKV to cross the placenta and to induce damage in the developing brain.


Subject(s)
Disease Models, Animal , Immunocompromised Host/immunology , Infectious Disease Transmission, Vertical , Zika Virus Infection/immunology , Zika Virus Infection/transmission , Zika Virus/immunology , Zika Virus/pathogenicity , Animals , Central Nervous System/immunology , Female , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Inflammation/immunology , Pregnancy , Zika Virus/genetics , Zika Virus Infection/genetics
12.
PLoS Pathog ; 12(4): e1005551, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27046083

ABSTRACT

Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice.


Subject(s)
Neuroglia/pathology , Neurons/pathology , PrPSc Proteins/genetics , Scrapie/genetics , Animals , Immunoblotting , Immunohistochemistry , Mice , Mice, Inbred C57BL , PrPSc Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Scrapie/pathology
13.
Am J Pathol ; 187(1): 187-199, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27955815

ABSTRACT

In the current study, we examined the ability of Salmonella enterica serovar Typhimurium to infect the central nervous system and cause meningitis following the natural route of infection in mice. C57BL/6J mice are extremely susceptible to systemic infection by Salmonella Typhimurium because of loss-of-function mutations in Nramp1 (SLC11A1), a phagosomal membrane protein that controls iron export from vacuoles and inhibits Salmonella growth in macrophages. Therefore, we assessed the ability of Salmonella to disseminate to the central nervous system (CNS) after oral infection in C57BL/6J mice expressing either wild-type (resistant) or mutant (susceptible) alleles of Nramp1. In both strains, oral infection resulted in focal meningitis and ventriculitis with recruitment of inflammatory monocytes to the CNS. In susceptible Nramp1-/- mice, there was a direct correlation between bacteremia and the number of bacteria in the brain, which was not observed in resistant Nramp1+/+ mice. A small percentage of Nramp1+/+ mice developed severe ataxia, which was associated with high bacterial loads in the CNS as well as clear histopathology of necrotizing vasculitis and hemorrhage in the brain. Thus, Nramp1 is not essential for Salmonella entry into the CNS or neuroinflammation, but may influence the mechanisms of CNS entry as well as the severity of meningitis.


Subject(s)
Cell Movement , Meningitis/microbiology , Meningitis/pathology , Monocytes/pathology , Salmonella typhimurium/physiology , Administration, Oral , Animals , Ataxia/metabolism , Ataxia/pathology , Bacteremia/complications , Bacteremia/microbiology , Bacteremia/pathology , Brain/microbiology , Brain/pathology , Cation Transport Proteins/deficiency , Cation Transport Proteins/metabolism , Cerebral Ventricles/pathology , Colony Count, Microbial , Encephalitis/complications , Encephalitis/metabolism , Encephalitis/pathology , Immunohistochemistry , Macrophages/pathology , Meningitis/complications , Mice, Inbred C57BL , Neutrophil Infiltration , Salmonella Infections, Animal/complications , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology
14.
J Neuroinflammation ; 14(1): 62, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28340587

ABSTRACT

BACKGROUND: La Crosse Virus (LACV) is a primary cause of pediatric viral encephalitis in the USA and can result in severe clinical outcomes. Almost all cases of LACV encephalitis occur in children 16 years or younger, indicating an age-related susceptibility. This susceptibility is recapitulated in a mouse model where weanling (3 weeks old or younger) mice are susceptible to LACV-induced disease, and adults (greater than 6 weeks) are resistant. Disease in mice and humans is associated with infiltrating leukocytes to the CNS. However, what cell types are infiltrating into the brain during virus infection and how these cells influence pathogenesis remain unknown. METHODS: In the current study, we analyzed lymphocytes recruited to the CNS during LACV-infection in clinical mice, using flow cytometry. We analyzed the contribution of these lymphocytes to LACV pathogenesis in weanling mice using knockout mice or antibody depletion. Additionally, we studied at the potential role of these lymphocytes in preventing LACV neurological disease in resistant adult mice. RESULTS: In susceptible weanling mice, disease was associated with infiltrating lymphocytes in the CNS, including NK cells, CD4 T cells, and CD8 T cells. Surprisingly, depletion of these cells did not impact neurological disease, suggesting these cells do not contribute to virus-mediated damage. In contrast, in disease-resistant adult animals, depletion of both CD4 T cells and CD8 T cells or depletion of B cells increased neurological disease, with higher levels of virus in the brain. CONCLUSIONS: Our current results indicate that lymphocytes do not influence neurological disease in young mice, but they have a critical role protecting adult animals from LACV pathogenesis. Although LACV is an acute virus infection, these studies indicate that the innate immune response in adults is not sufficient for protection and that components of the adaptive immune response are necessary to prevent virus from invading the CNS.


Subject(s)
Encephalitis, California/immunology , Lymphocytes/immunology , Animals , Disease Models, Animal , La Crosse virus , Mice , Mice, Inbred C57BL , Mice, Knockout
15.
J Virol ; 90(13): 6001-6013, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27099312

ABSTRACT

UNLABELLED: Although all 12 subtypes of human interferon alpha (IFN-α) bind the same receptor, recent results have demonstrated that they elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-α2 subtype is currently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective subtype against HIV-1 in vitro We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the human IFN-α14 subtype has very potent anti-HIV-1 activity whereas IFN-α2 does not. In both postexposure prophylaxis and treatment of acute infections, IFN-α14, but not IFN-α2, significantly suppressed HIV-1 replication and proviral loads. Furthermore, HIV-1-induced immune hyperactivation, which is a prognosticator of disease progression, was reduced by IFN-α14 but not IFN-α2. Whereas ineffective IFN-α2 therapy was associated with CD8(+) T cell activation, successful IFN-α14 therapy was associated with increased intrinsic and innate immunity, including significantly higher induction of tetherin and MX2, increased APOBEC3G signature mutations in HIV-1 proviral DNA, and higher frequencies of TRAIL(+) NK cells. These results identify IFN-α14 as a potent new therapeutic that operates via mechanisms distinct from those of antiretroviral drugs. The ability of IFN-α14 to reduce both viremia and proviral loads in vivo suggests that it has strong potential as a component of a cure strategy for HIV-1 infections. The broad implication of these results is that the antiviral efficacy of each individual IFN-α subtype should be evaluated against the specific virus being treated. IMPORTANCE: The naturally occurring antiviral protein IFN-α2 is used to treat hepatitis viruses but has proven rather ineffective against HIV in comparison to triple therapy with the antiretroviral (ARV) drugs. Although ARVs suppress the replication of HIV, they fail to completely clear infections. Since IFN-α acts by different mechanism than ARVs and has been shown to reduce HIV proviral loads, clinical trials are under way to test whether IFN-α2 combined with ARVs might eradicate HIV-1 infections. IFN-α is actually a family of 12 distinct proteins, and each IFN-α subtype has different efficacies toward different viruses. Here, we use mice that contain a human immune system, so they can be infected with HIV. With this model, we demonstrate that while IFN-α2 is only weakly effective against HIV, IFN-α14 is extremely potent. This discovery identifies IFN-α14 as a more powerful IFN-α subtype for use in combination therapy trials aimed toward an HIV cure.


Subject(s)
Antiviral Agents/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , Interferon-alpha/therapeutic use , Viral Load/drug effects , Virus Replication/drug effects , APOBEC-3G Deaminase/genetics , Animals , Antigens, CD/genetics , CD8-Positive T-Lymphocytes/immunology , Disease Progression , GPI-Linked Proteins/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/physiology , Humans , Immunity, Innate , Interferon-alpha/classification , Interferon-alpha/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation , Mice , Mice, Transgenic , Myxovirus Resistance Proteins/genetics , Viremia/drug therapy
16.
J Immunol ; 195(10): 4913-21, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26423149

ABSTRACT

Neuronal apoptosis is a key aspect of many different neurologic diseases, but the mechanisms remain unresolved. Recent studies have suggested a mechanism of innate immune-induced neuronal apoptosis through the stimulation of endosomal TLRs in neurons. TLRs are stimulated both by pathogen-associated molecular patterns as well as by damage-associated molecular patterns, including microRNAs released by damaged neurons. In the present study, we identified the mechanism responsible for TLR7/TLR9-mediated neuronal apoptosis. TLR-induced apoptosis required endosomal localization of TLRs but was independent of MyD88 signaling. Instead, apoptosis required the TLR adaptor molecule SARM1, which localized to the mitochondria following TLR activation and was associated with mitochondrial accumulation in neurites. Deficiency in SARM1 inhibited both mitochondrial accumulation in neurites and TLR-induced apoptosis. These studies identify a non-MyD88 pathway of TLR7/ TLR9 signaling in neurons and provide a mechanism for how innate immune responses in the CNS directly induce neuronal damage.


Subject(s)
Apoptosis/immunology , Armadillo Domain Proteins/immunology , Cytoskeletal Proteins/immunology , Membrane Glycoproteins/immunology , Myeloid Differentiation Factor 88/immunology , Neurites/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 9/immunology , Animals , Apoptosis/genetics , Armadillo Domain Proteins/genetics , Cytoskeletal Proteins/genetics , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/immunology , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 9/genetics
17.
J Virol ; 90(6): 2783-93, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26719257

ABSTRACT

UNLABELLED: Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection. NPY(-/-) mice had increased incidence and kinetics of retrovirus-induced neurological disease, which correlated with a significant increase in monocytes in the CNS compared to wild-type mice. Both Ly6C(hi) inflammatory and Ly6C(lo) alternatively activated monocytes were increased in the CNS of NPY(-/-) mice following virus infection, suggesting that NPY suppresses the infiltration of both cell types. Ex vivo analysis of myeloid cells from brain tissue demonstrated that infiltrating monocytes expressed high levels of the NPY receptor Y2R. Correlating with the expression of Y2R on monocytes, treatment of NPY(-/-) mice with a truncated, Y2R-specific NPY peptide suppressed the incidence of retrovirus-induced neurological disease. These data demonstrate a clear role for NPY as a negative regulator of monocyte recruitment into the CNS and provide a new mechanism for suppression of retrovirus-induced neurological disease. IMPORTANCE: Monocyte recruitment to the brain is associated with multiple neurological diseases. However, the factors that influence the recruitment of these cells to the brain are still not well understood. In the current study, we found that neuropeptide Y, a protein produced by neurons, affected monocyte recruitment to the brain during retrovirus infection. We show that mice deficient in NPY have increased influx of monocytes into the brain and that this increase in monocytes correlates with neurological-disease development. These studies provide a mechanism by which the nervous system, through the production of NPY, can suppress monocyte trafficking to the brain and reduce retrovirus-induced neurological disease.


Subject(s)
Cell Movement , Central Nervous System/immunology , Immunosuppressive Agents/metabolism , Monocytes/immunology , Neuropeptide Y/metabolism , Retroviridae Infections/immunology , Animals , Central Nervous System/pathology , Central Nervous System/virology , Disease Models, Animal , Mice , Mice, Knockout , Monocytes/physiology , Retroviridae Infections/pathology
18.
J Virol ; 88(19): 11070-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25008929

ABSTRACT

UNLABELLED: La Crosse virus (LACV) is the major cause of pediatric viral encephalitis in the United States; however, the mechanisms responsible for age-related susceptibility in the pediatric population are not well understood. Our current studies in a mouse model of LACV infection indicated that differences in myeloid dendritic cell (mDC) responses between weanling and adult mice accounted for susceptibility to LACV-induced neurological disease. We found that type I interferon (IFN) responses were significantly stronger in adult than in weanling mice. Production of these IFNs required both endosomal Toll-like receptors (TLRs) and cytoplasmic RIG-I-like receptors (RLRs). Surprisingly, IFN expression was not dependent on plasmacytoid DCs (pDCs) but rather was dependent on mDCs, which were found in greater number and induced stronger IFN responses in adults than in weanlings. Inhibition of these IFN responses in adults resulted in susceptibility to LACV-induced neurological disease, whereas postinfection treatment with type I IFN provided protection in young mice. These studies provide a definitive mechanism for age-related susceptibility to LACV encephalitis, where mDCs in young mice are insufficiently activated to control peripheral virus replication, thereby allowing virus to persist and eventually cause central nervous system (CNS) disease. IMPORTANCE: La Crosse virus (LACV) is the primary cause of pediatric viral encephalitis in the United States. Although the virus infects both adults and children, over 80% of the reported neurological disease cases are in children. To understand why LACV causes neurological disease primarily in young animals, we used a mouse model where weanling mice, but not adult mice, develop neurological disease following virus infection. We found that an early immune response cell type, myeloid dendritic cells, was critical for protection in adult animals and that these cells were reduced in young animals. Activation of these cells during virus infection or after treatment with type I interferon in young animals provided protection from LACV. Thus, this study demonstrates a reason for susceptibility to LACV infection in young animals and shows that early therapeutic treatment in young animals can prevent neurological disease.


Subject(s)
Central Nervous System/immunology , Dendritic Cells/immunology , Encephalitis, California/immunology , La Crosse virus/immunology , Myeloid Cells/immunology , Age Factors , Animals , Animals, Newborn , Central Nervous System/virology , Dendritic Cells/virology , Disease Models, Animal , Disease Susceptibility , Encephalitis, California/mortality , Encephalitis, California/virology , Gene Expression/immunology , Humans , Injections, Intradermal , Injections, Intraperitoneal , Injections, Intraventricular , Interferon Type I/genetics , Interferon Type I/immunology , Mice , Myeloid Cells/virology , Survival Analysis , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Virus Replication
19.
Am J Pathol ; 184(2): 382-96, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24316110

ABSTRACT

Globoid cell leukodystrophy is a lysosomal storage disease characterized by the loss of galactocerebrosidase. Galactocerebrosidase loss leads to the accumulation of psychosine and subsequent oligodendrocyte cell death, demyelination, macrophage recruitment, and astroglial activation and proliferation. To date, no studies have elucidated the mechanism of glial cell activation and cytokine and chemokine up-regulation and release. We explored a novel explanation for the development of the pathological changes in the early stages of globoid cell leukodystrophy associated with toll-like receptor (TLR) 2 up-regulation in the hindbrain and cerebellum as a response to dying oligodendrocytes. TLR2 up-regulation on microglia/macrophages coincided with morphological changes consistent with activation at 2 and 3 weeks of age. TLR2 up-regulation on activated microglia/macrophages resulted in astrocyte activation and marked up-regulation of cytokines/chemokines. Because oligodendrocyte cell death is an important feature of globoid cell leukodystrophy, we tested the ability of TLR2 reporter cells to respond to oligodendrocyte cell death. These reporter cells responded in vitro to medium conditioned by psychosine-treated oligodendrocytes, indicating the likelihood that oligodendrocytes release a TLR2 ligand during apoptosis. TLRs are a member of the innate immune system and initiate immune and inflammatory events; therefore, the identification of TLR2 as a potential driver in the activation of central nervous system glial activity in globoid cell leukodystrophy may provide important insight into its pathogenesis.


Subject(s)
Immunity, Innate , Leukodystrophy, Globoid Cell/etiology , Leukodystrophy, Globoid Cell/immunology , Aging/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Calcium-Binding Proteins/metabolism , Cell Aggregation/drug effects , Cell Line , Cell Shape/drug effects , Chemokines/metabolism , Disease Models, Animal , Fluorescence , Glial Fibrillary Acidic Protein/metabolism , Humans , Immunity, Innate/drug effects , Leukodystrophy, Globoid Cell/pathology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Mice , Microfilament Proteins/metabolism , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Myelin Sheath/metabolism , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Oligodendroglia/pathology , Psychosine/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhombencephalon/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Up-Regulation/drug effects
20.
Blood ; 122(25): 4013-20, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24021673

ABSTRACT

The use of C57BL/6 Rag2(-/-)γc(-/-) mice as recipients for xenotransplantation with human immune systems (humanization) has been problematic because C57BL/6 SIRPα does not recognize human CD47, and such recognition is required to suppress macrophage-mediated phagocytosis of transplanted human hematopoietic stem cells (HSCs). We show that genetic inactivation of CD47 on the C57BL/6 Rag2(-/-)γc(-/-) background negates the requirement for CD47-signal recognition protein α (SIRPα) signaling and induces tolerance to transplanted human HSCs. These triple-knockout, bone marrow, liver, thymus (TKO-BLT) humanized mice develop organized lymphoid tissues including mesenteric lymph nodes, splenic follicles and gut-associated lymphoid tissue that demonstrate high levels of multilineage hematopoiesis. Importantly, these mice have an intact complement system and showed no signs of graft-versus-host disease (GVHD) out to 29 weeks after transplantation. Sustained, high-level HIV-1 infection was observed via either intrarectal or intraperitoneal inoculation. TKO-BLT mice exhibited hallmarks of human HIV infection including CD4(+) T-cell depletion, immune activation, and development of HIV-specific B- and T-cell responses. The lack of GVHD makes the TKO-BLT mouse a significantly improved model for long-term studies of pathogenesis, immune responses, therapeutics, and vaccines to human pathogens.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Graft vs Host Disease , HIV Infections/immunology , HIV-1/immunology , Hematopoietic Stem Cell Transplantation , Immunity, Cellular , Lymphoid Tissue/immunology , Animals , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/pathology , Disease Models, Animal , HIV Infections/genetics , HIV Infections/pathology , Heterografts , Humans , Lymphoid Tissue/pathology , Lymphoid Tissue/virology , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL