Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 386(8): 744-756, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34986294

ABSTRACT

BACKGROUND: Before the emergence of the B.1.617.2 (delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination reduced transmission of SARS-CoV-2 from vaccinated persons who became infected, potentially by reducing viral loads. Although vaccination still lowers the risk of infection, similar viral loads in vaccinated and unvaccinated persons who are infected with the delta variant call into question the degree to which vaccination prevents transmission. METHODS: We used contact-testing data from England to perform a retrospective observational cohort study involving adult contacts of SARS-CoV-2-infected adult index patients. We used multivariable Poisson regression to investigate associations between transmission and the vaccination status of index patients and contacts and to determine how these associations varied with the B.1.1.7 (alpha) and delta variants and time since the second vaccination. RESULTS: Among 146,243 tested contacts of 108,498 index patients, 54,667 (37%) had positive SARS-CoV-2 polymerase-chain-reaction (PCR) tests. In index patients who became infected with the alpha variant, two vaccinations with either BNT162b2 or ChAdOx1 nCoV-19 (also known as AZD1222), as compared with no vaccination, were independently associated with reduced PCR positivity in contacts (adjusted rate ratio with BNT162b2, 0.32; 95% confidence interval [CI], 0.21 to 0.48; and with ChAdOx1 nCoV-19, 0.48; 95% CI, 0.30 to 0.78). Vaccine-associated reductions in transmission of the delta variant were smaller than those with the alpha variant, and reductions in transmission of the delta variant after two BNT162b2 vaccinations were greater (adjusted rate ratio for the comparison with no vaccination, 0.50; 95% CI, 0.39 to 0.65) than after two ChAdOx1 nCoV-19 vaccinations (adjusted rate ratio, 0.76; 95% CI, 0.70 to 0.82). Variation in cycle-threshold (Ct) values (indicative of viral load) in index patients explained 7 to 23% of vaccine-associated reductions in transmission of the two variants. The reductions in transmission of the delta variant declined over time after the second vaccination, reaching levels that were similar to those in unvaccinated persons by 12 weeks in index patients who had received ChAdOx1 nCoV-19 and attenuating substantially in those who had received BNT162b2. Protection in contacts also declined in the 3-month period after the second vaccination. CONCLUSIONS: Vaccination was associated with a smaller reduction in transmission of the delta variant than of the alpha variant, and the effects of vaccination decreased over time. PCR Ct values at diagnosis of the index patient only partially explained decreased transmission. (Funded by the U.K. Government Department of Health and Social Care and others.).


Subject(s)
BNT162 Vaccine , COVID-19/transmission , ChAdOx1 nCoV-19 , Disease Transmission, Infectious/prevention & control , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , England , Female , Humans , Male , Middle Aged , Retrospective Studies , Viral Load
2.
Am J Epidemiol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808625

ABSTRACT

Detecting and quantifying changes in growth rates of infectious diseases is vital to informing public health strategy and can inform policymakers' rationale for implementing or continuing interventions aimed at reducing impact. Substantial changes in SARS-CoV-2 prevalence with emergence of variants provides opportunity to investigate different methods to do this. We included PCR results from all participants in the UK's COVID-19 Infection Survey between August 2020-June 2022. Change-points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalised additive models (GAMs). Consistency between methods and timeliness of detection were compared. Of 8,799,079 visits, 147,278 (1.7%) were PCR-positive. Change-points associated with emergence of major variants were estimated to occur a median 4 days earlier (IQR 0-8) in GAMs versus ISR. When estimating recent change-points using successive data periods, four change-points (4/96) identified by GAMs were not found when adding later data or by ISR. Change-points were detected 3-5 weeks after they occurred in both methods but could be detected earlier within specific subgroups. Change-points in growth rates of SARS-CoV-2 can be detected in near real-time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories both methods could be run in parallel.

3.
N Engl J Med ; 384(6): 533-540, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33369366

ABSTRACT

BACKGROUND: The relationship between the presence of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the risk of subsequent reinfection remains unclear. METHODS: We investigated the incidence of SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) in seropositive and seronegative health care workers attending testing of asymptomatic and symptomatic staff at Oxford University Hospitals in the United Kingdom. Baseline antibody status was determined by anti-spike (primary analysis) and anti-nucleocapsid IgG assays, and staff members were followed for up to 31 weeks. We estimated the relative incidence of PCR-positive test results and new symptomatic infection according to antibody status, adjusting for age, participant-reported gender, and changes in incidence over time. RESULTS: A total of 12,541 health care workers participated and had anti-spike IgG measured; 11,364 were followed up after negative antibody results and 1265 after positive results, including 88 in whom seroconversion occurred during follow-up. A total of 223 anti-spike-seronegative health care workers had a positive PCR test (1.09 per 10,000 days at risk), 100 during screening while they were asymptomatic and 123 while symptomatic, whereas 2 anti-spike-seropositive health care workers had a positive PCR test (0.13 per 10,000 days at risk), and both workers were asymptomatic when tested (adjusted incidence rate ratio, 0.11; 95% confidence interval, 0.03 to 0.44; P = 0.002). There were no symptomatic infections in workers with anti-spike antibodies. Rate ratios were similar when the anti-nucleocapsid IgG assay was used alone or in combination with the anti-spike IgG assay to determine baseline status. CONCLUSIONS: The presence of anti-spike or anti-nucleocapsid IgG antibodies was associated with a substantially reduced risk of SARS-CoV-2 reinfection in the ensuing 6 months. (Funded by the U.K. Government Department of Health and Social Care and others.).


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Health Personnel , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Female , Humans , Immunoglobulin G/blood , Incidence , Longitudinal Studies , Male , Middle Aged , Polymerase Chain Reaction , Recurrence , SARS-CoV-2/isolation & purification , Seroconversion , United Kingdom , Young Adult
4.
Clin Infect Dis ; 75(1): e329-e337, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34748629

ABSTRACT

BACKGROUND: "Classic" symptoms (cough, fever, loss of taste/smell) prompt severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing in the United Kingdom. Studies have assessed the ability of different symptoms to identify infection, but few have compared symptoms over time (reflecting variants) and by vaccination status. METHODS: Using the COVID-19 Infection Survey, sampling households across the United Kingdom, we compared symptoms in PCR-positives vs PCR-negatives, evaluating sensitivity of combinations of 12 symptoms (percentage symptomatic PCR-positives reporting specific symptoms) and tests per case (TPC) (PCR-positives or PCR-negatives reporting specific symptoms/ PCR-positives reporting specific symptoms). RESULTS: Between April 2020 and August 2021, 27 869 SARS-CoV-2 PCR-positive episodes occurred in 27 692 participants (median 42 years), of whom 13 427 (48%) self-reported symptoms ("symptomatic PCR-positives"). The comparator comprised 3 806 692 test-negative visits (457 215 participants); 130 612 (3%) self-reported symptoms ("symptomatic PCR-negatives"). Symptom reporting in PCR-positives varied by age, sex, and ethnicity, and over time, reflecting changes in prevalence of viral variants, incidental changes (eg, seasonal pathogens (with sore throat increasing in PCR-positives and PCR-negatives from April 2021), schools reopening) and vaccination rollout. After May 2021 when Delta emerged, headache and fever substantially increased in PCR-positives, but not PCR-negatives. Sensitivity of symptom-based detection increased from 74% using "classic" symptoms, to 81% adding fatigue/weakness, and 90% including all 8 additional symptoms. However, this increased TPC from 4.6 to 5.3 to 8.7. CONCLUSIONS: Expanded symptom combinations may provide modest benefits for sensitivity of PCR-based case detection, but this will vary between settings and over time, and increases tests/case. Large-scale changes to targeted PCR-testing approaches require careful evaluation given substantial resource and infrastructure implications.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Fever/etiology , Humans , SARS-CoV-2/genetics , United Kingdom/epidemiology
5.
Clin Infect Dis ; 74(3): 407-415, 2022 02 11.
Article in English | MEDLINE | ID: mdl-33972994

ABSTRACT

BACKGROUND: How severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity varies with viral load is incompletely understood. Whether rapid point-of-care antigen lateral flow devices (LFDs) detect most potential transmission sources despite imperfect clinical sensitivity is unknown. METHODS: We combined SARS-CoV-2 testing and contact tracing data from England between 1 September 2020 and 28 February 2021. We used multivariable logistic regression to investigate relationships between polymerase chain reaction (PCR)-confirmed infection in contacts of community-diagnosed cases and index case viral load, S gene target failure (proxy for B.1.1.7 infection), demographics, SARS-CoV-2 incidence, social deprivation, and contact event type. We used LFD performance to simulate the proportion of cases with a PCR-positive contact expected to be detected using 1 of 4 LFDs. RESULTS: In total, 231 498/2 474 066 (9%) contacts of 1 064 004 index cases tested PCR-positive. PCR-positive results in contacts independently increased with higher case viral loads (lower cycle threshold [Ct] values), for example, 11.7% (95% confidence interval [CI] 11.5-12.0%) at Ct = 15 and 4.5% (95% CI 4.4-4.6%) at Ct = 30. B.1.1.7 infection increased PCR-positive results by ~50%, (eg, 1.55-fold, 95% CI 1.49-1.61, at Ct = 20). PCR-positive results were most common in household contacts (at Ct = 20.1, 8.7% [95% CI 8.6-8.9%]), followed by household visitors (7.1% [95% CI 6.8-7.3%]), contacts at events/activities (5.2% [95% CI 4.9-5.4%]), work/education (4.6% [95% CI 4.4-4.8%]), and least common after outdoor contact (2.9% [95% CI 2.3-3.8%]). Contacts of children were the least likely to test positive, particularly following contact outdoors or at work/education. The most and least sensitive LFDs would detect 89.5% (95% CI 89.4-89.6%) and 83.0% (95% CI 82.8-83.1%) of cases with PCR-positive contacts, respectively. CONCLUSIONS: SARS-CoV-2 infectivity varies by case viral load, contact event type, and age. Those with high viral loads are the most infectious. B.1.1.7 increased transmission by ~50%. The best performing LFDs detect most infectious cases.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Child , Family Characteristics , Humans , Viral Load
6.
Clin Infect Dis ; 74(7): 1208-1219, 2022 04 09.
Article in English | MEDLINE | ID: mdl-34216472

ABSTRACT

BACKGROUND: Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. METHODS: In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after 1 versus 2 vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. RESULTS: In total, 13 109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses), and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and 2 vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95% confidence interval {CI} < .01-.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [95% CI .02-.38]) and 85% (0.15 [95% CI .08-.26]), respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [95% CI .21-.52]) and any PCR-positive result by 64% (0.36 [95% CI .26-.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. CONCLUSIONS: Natural infection resulting in detectable anti-spike antibodies and 2 vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Immunoglobulins , Incidence , Longitudinal Studies , Vaccination
7.
Lancet ; 398(10307): 1217-1229, 2021 10 02.
Article in English | MEDLINE | ID: mdl-34534517

ABSTRACT

BACKGROUND: School-based COVID-19 contacts in England have been asked to self-isolate at home, missing key educational opportunities. We trialled daily testing of contacts as an alternative to assess whether this resulted in similar control of transmission, while allowing more school attendance. METHODS: We did an open-label, cluster-randomised, controlled trial in secondary schools and further education colleges in England. Schools were randomly assigned (1:1) to self-isolation of school-based COVID-19 contacts for 10 days (control) or to voluntary daily lateral flow device (LFD) testing for 7 days with LFD-negative contacts remaining at school (intervention). Randomisation was stratified according to school type and size, presence of a sixth form, presence of residential students, and proportion of students eligible for free school meals. Group assignment was not masked during procedures or analysis. Coprimary outcomes in all students and staff were COVID-19-related school absence and symptomatic PCR-confirmed COVID-19, adjusted for community case rates, to estimate within-school transmission (non-inferiority margin <50% relative increase). Analyses were done on an intention-to-treat basis using quasi-Poisson regression, also estimating complier average causal effects (CACE). This trial is registered with the ISRCTN registry, ISRCTN18100261. FINDINGS: Between March 18 and May 4, 2021, 204 schools were taken through the consent process, during which three decided not to participate further. 201 schools were randomly assigned (control group n=99, intervention group n=102) in the 10-week study (April 19-May 10, 2021), which continued until the pre-appointed stop date (June 27, 2021). 76 control group schools and 86 intervention group schools actively participated; additional national data allowed most non-participating schools to be included in analysis of coprimary outcomes. 2432 (42·4%) of 5763 intervention group contacts participated in daily contact testing. There were 657 symptomatic PCR-confirmed infections during 7 782 537 days-at-risk (59·1 per 100 000 per week) in the control group and 740 during 8 379 749 days-at-risk (61·8 per 100 000 per week) in the intervention group (intention-to-treat adjusted incidence rate ratio [aIRR] 0·96 [95% CI 0·75-1·22]; p=0·72; CACE aIRR 0·86 [0·55-1·34]). Among students and staff, there were 59 422 (1·62%) COVID-19-related absences during 3 659 017 person-school-days in the control group and 51 541 (1·34%) during 3 845 208 person-school-days in the intervention group (intention-to-treat aIRR 0·80 [95% CI 0·54-1·19]; p=0·27; CACE aIRR 0·61 [0·30-1·23]). INTERPRETATION: Daily contact testing of school-based contacts was non-inferior to self-isolation for control of COVID-19 transmission, with similar rates of symptomatic infections among students and staff with both approaches. Infection rates in school-based contacts were low, with very few school contacts testing positive. Daily contact testing should be considered for implementation as a safe alternative to home isolation following school-based exposures. FUNDING: UK Government Department of Health and Social Care.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Communicable Disease Control/methods , Quarantine/methods , Schools , Adolescent , Adult , Aged , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Nucleic Acid Testing , COVID-19 Testing/methods , Child , Educational Personnel , England , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Young Adult
8.
J Antimicrob Chemother ; 77(9): 2536-2545, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35723965

ABSTRACT

BACKGROUND: Reported bacteraemia outcomes following inactive empirical antibiotics (based on in vitro testing) are conflicting, potentially reflecting heterogeneity in causative species, MIC breakpoints defining resistance/susceptibility, and times to rescue therapy. METHODS: We investigated adult inpatients with Escherichia coli bacteraemia at Oxford University Hospitals, UK, from 4 February 2014 to 30 June 2021 who were receiving empirical amoxicillin/clavulanate with/without other antibiotics. We used Cox regression to analyse 30 day all-cause mortality by in vitro amoxicillin/clavulanate susceptibility (activity) using the EUCAST resistance breakpoint (>8/2 mg/L), categorical MIC, and a higher resistance breakpoint (>32/2 mg/L), adjusting for other antibiotic activity and confounders including comorbidities, vital signs and blood tests. RESULTS: A total of 1720 E. coli bacteraemias (1626 patients) were treated with empirical amoxicillin/clavulanate. Thirty-day mortality was 193/1400 (14%) for any active baseline therapy and 52/320 (16%) for inactive baseline therapy (P = 0.17). With EUCAST breakpoints, there was no evidence that mortality differed for inactive versus active amoxicillin/clavulanate [adjusted HR (aHR) = 1.27 (95% CI 0.83-1.93); P = 0.28], nor of an association with active aminoglycoside (P = 0.93) or other active antibiotics (P = 0.18). Considering categorical amoxicillin/clavulanate MIC, MICs > 32/2 mg/L were associated with mortality [aHR = 1.85 versus MIC = 2/2 mg/L (95% CI 0.99-3.73); P = 0.054]. A higher resistance breakpoint (>32/2 mg/L) was independently associated with higher mortality [aHR = 1.82 (95% CI 1.07-3.10); P = 0.027], as were MICs > 32/2 mg/L with active empirical aminoglycosides [aHR = 2.34 (95% CI 1.40-3.89); P = 0.001], but not MICs > 32/2 mg/L with active non-aminoglycoside antibiotic(s) [aHR = 0.87 (95% CI 0.40-1.89); P = 0.72]. CONCLUSIONS: We found no evidence that EUCAST-defined amoxicillin/clavulanate resistance was associated with increased mortality, but a higher resistance breakpoint (MIC > 32/2 mg/L) was. Additional active baseline non-aminoglycoside antibiotics attenuated amoxicillin/clavulanate resistance-associated mortality, but aminoglycosides did not. Granular phenotyping and comparison with clinical outcomes may improve AMR breakpoints.


Subject(s)
Bacteremia , Escherichia coli Infections , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Electronic Health Records , Escherichia coli , Escherichia coli Infections/drug therapy , Humans , Microbial Sensitivity Tests
9.
Clin Infect Dis ; 73(3): e699-e709, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33400782

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. METHODS: We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. RESULTS: Anti-spike IgG levels remained stably detected after a positive result, for example, in 94% (95% credibility interval [CrI] 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% CrI 19-31) days post first polymerase chain reaction (PCR)-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titer, the mean estimated antibody half-life was 85 (95% CrI 81-90) days. Higher maximum observed anti-nucleocapsid titers were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity, and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. CONCLUSIONS: SARS-CoV-2 anti-nucleocapsid antibodies wane within months and fall faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Antibody Formation , Bayes Theorem , Health Personnel , Humans , Immunoglobulin G , Seroepidemiologic Studies
10.
Emerg Infect Dis ; 27(9): 2294-2300, 2021 09.
Article in English | MEDLINE | ID: mdl-34423760

ABSTRACT

Genomic analysis of a diverse collection of Clostridioides difficile ribotype 078 isolates from Ireland and 9 countries in Europe provided evidence for complex regional and international patterns of dissemination that are not restricted to humans. These isolates are associated with C. difficile colonization and clinical illness in humans and pigs.


Subject(s)
Clostridioides difficile , Clostridium Infections , Animals , Clostridioides , Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Europe/epidemiology , Humans , Ribotyping , Swine
11.
N Engl J Med ; 379(14): 1322-1331, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30281988

ABSTRACT

BACKGROUND: Candida auris is an emerging and multidrug-resistant pathogen. Here we report the epidemiology of a hospital outbreak of C. auris colonization and infection. METHODS: After identification of a cluster of C. auris infections in the neurosciences intensive care unit (ICU) of the Oxford University Hospitals, United Kingdom, we instituted an intensive patient and environmental screening program and package of interventions. Multivariable logistic regression was used to identify predictors of C. auris colonization and infection. Isolates from patients and from the environment were analyzed by whole-genome sequencing. RESULTS: A total of 70 patients were identified as being colonized or infected with C. auris between February 2, 2015, and August 31, 2017; of these patients, 66 (94%) had been admitted to the neurosciences ICU before diagnosis. Invasive C. auris infections developed in 7 patients. When length of stay in the neurosciences ICU and patient vital signs and laboratory results were controlled for, the predictors of C. auris colonization or infection included the use of reusable skin-surface axillary temperature probes (multivariable odds ratio, 6.80; 95% confidence interval [CI], 2.96 to 15.63; P<0.001) and systemic fluconazole exposure (multivariable odds ratio, 10.34; 95% CI, 1.64 to 65.18; P=0.01). C. auris was rarely detected in the general environment. However, it was detected in isolates from reusable equipment, including multiple axillary skin-surface temperature probes. Despite a bundle of infection-control interventions, the incidence of new cases was reduced only after removal of the temperature probes. All outbreak sequences formed a single genetic cluster within the C. auris South African clade. The sequenced isolates from reusable equipment were genetically related to isolates from the patients. CONCLUSIONS: The transmission of C. auris in this hospital outbreak was found to be linked to reusable axillary temperature probes, indicating that this emerging pathogen can persist in the environment and be transmitted in health care settings. (Funded by the National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University and others.).


Subject(s)
Candida , Candidiasis/epidemiology , Cross Infection/epidemiology , Disease Outbreaks , Equipment Contamination , Equipment Reuse , Infection Control/methods , Intensive Care Units , Thermometers/microbiology , Adult , Candida/genetics , Candida/isolation & purification , Candidiasis/mortality , Candidiasis/transmission , Case-Control Studies , Cross Infection/mortality , Cross Infection/transmission , Female , Hospital Departments , Humans , Incidence , Male , Microbial Sensitivity Tests , Middle Aged , Multivariate Analysis , Neurology , Phylogeny , Risk Factors , United Kingdom/epidemiology
12.
Article in English | MEDLINE | ID: mdl-32205351

ABSTRACT

Resistance to amoxicillin-clavulanate, a widely used beta-lactam/beta-lactamase inhibitor combination antibiotic, is rising globally, and yet susceptibility testing remains challenging. To test whether whole-genome sequencing (WGS) could provide a more reliable assessment of susceptibility than traditional methods, we predicted resistance from WGS for 976 Escherichia coli bloodstream infection isolates from Oxfordshire, United Kingdom, comparing against phenotypes from the BD Phoenix (calibrated against EUCAST guidelines). A total of 339/976 (35%) isolates were amoxicillin-clavulanate resistant. Predictions based solely on beta-lactamase presence/absence performed poorly (sensitivity, 23% [78/339]) but improved when genetic features associated with penicillinase hyperproduction (e.g., promoter mutations and copy number estimates) were considered (sensitivity, 82% [277/339]; P < 0.0001). Most discrepancies occurred in isolates with MICs within ±1 doubling dilution of the breakpoint. We investigated two potential causes: the phenotypic reference and the binary resistant/susceptible classification. We performed reference standard, replicated phenotyping in a random stratified subsample of 261/976 (27%) isolates using agar dilution, following both EUCAST and CLSI guidelines, which use different clavulanate concentrations. As well as disagreeing with each other, neither agar dilution phenotype aligned perfectly with genetic features. A random-effects model investigating associations between genetic features and MICs showed that some genetic features had small, variable and additive effects, resulting in variable resistance classification. Using model fixed-effects to predict MICs for the non-agar dilution isolates, predicted MICs were in essential agreement (±1 doubling dilution) with observed (BD Phoenix) MICs for 691/715 (97%) isolates. This suggests amoxicillin-clavulanate resistance in E. coli is quantitative, rather than qualitative, explaining the poorly reproducible binary (resistant/susceptible) phenotypes and suboptimal concordance between different phenotypic methods and with WGS-based predictions.


Subject(s)
Amoxicillin-Potassium Clavulanate Combination , Escherichia coli , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clavulanic Acid/pharmacology , Escherichia coli/genetics , Microbial Sensitivity Tests , Phenotype , United Kingdom , beta-Lactamases/genetics
13.
Euro Surveill ; 25(42)2020 10.
Article in English | MEDLINE | ID: mdl-33094717

ABSTRACT

SARS-CoV-2 IgG screening of 1,000 antenatal serum samples in the Oxford area, United Kingdom, between 14 April and 15 June 2020, yielded a 5.3% seroprevalence, mirroring contemporaneous regional data. Among the 53 positive samples, 39 showed in vitro neutralisation activity, correlating with IgG titre (Pearson's correlation p<0.0001). While SARS-CoV-2 seroprevalence in pregnancy cohorts could potentially inform population surveillance, clinical correlates of infection and immunity in pregnancy, and antenatal epidemiology evolution over time need further study.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Immunoglobulin G/blood , Pandemics , Pneumonia, Viral/epidemiology , Population Surveillance , Pregnancy Complications, Infectious/blood , Pregnancy Trimester, First/blood , Adolescent , Adult , COVID-19 , Cohort Studies , Coronavirus Infections/blood , England/epidemiology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Middle Aged , Pneumonia, Viral/blood , Pregnancy , Prenatal Diagnosis , Prevalence , SARS-CoV-2 , Seroepidemiologic Studies , Single-Blind Method , Young Adult
14.
BMC Med ; 17(1): 169, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31481119

ABSTRACT

BACKGROUND: Diagnostic codes from electronic health records are widely used to assess patterns of disease. Infective endocarditis is an uncommon but serious infection, with objective diagnostic criteria. Electronic health records have been used to explore the impact of changing guidance on antibiotic prophylaxis for dental procedures on incidence, but limited data on the accuracy of the diagnostic codes exists. Endocarditis was used as a clinically relevant case study to investigate the relationship between clinical cases and diagnostic codes, to understand discrepancies and to improve design of future studies. METHODS: Electronic health record data from two UK tertiary care centres were linked with data from a prospectively collected clinical endocarditis service database (Leeds Teaching Hospital) or retrospective clinical audit and microbiology laboratory blood culture results (Oxford University Hospitals Trust). The relationship between diagnostic codes for endocarditis and confirmed clinical cases according to the objective Duke criteria was assessed, and impact on estimations of disease incidence and trends. RESULTS: In Leeds 2006-2016, 738/1681(44%) admissions containing any endocarditis code represented a definite/possible case, whilst 263/1001(24%) definite/possible endocarditis cases had no endocarditis code assigned. In Oxford 2010-2016, 307/552(56%) reviewed endocarditis-coded admissions represented a clinical case. Diagnostic codes used by most endocarditis studies had good positive predictive value (PPV) but low sensitivity (e.g. I33-primary 82% and 43% respectively); one (I38-secondary) had PPV under 6%. Estimating endocarditis incidence using raw admission data overestimated incidence trends twofold. Removing records with non-specific codes, very short stays and readmissions improved predictive ability. Estimating incidence of streptococcal endocarditis using secondary codes also overestimated increases in incidence over time. Reasons for discrepancies included changes in coding behaviour over time, and coding guidance allowing assignment of a code mentioning 'endocarditis' where endocarditis was never mentioned in the clinical notes. CONCLUSIONS: Commonly used diagnostic codes in studies of endocarditis had good predictive ability. Other apparently plausible codes were poorly predictive. Use of diagnostic codes without examining sensitivity and predictive ability can give inaccurate estimations of incidence and trends. Similar considerations may apply to other diseases. Health record studies require validation of diagnostic codes and careful data curation to minimise risk of serious errors.


Subject(s)
Clinical Coding/standards , Electronic Health Records/standards , Endocarditis/epidemiology , Databases, Factual , Female , Humans , Incidence , International Classification of Diseases , Retrospective Studies
15.
J Clin Microbiol ; 58(1)2019 12 23.
Article in English | MEDLINE | ID: mdl-31666367

ABSTRACT

Pathogen whole-genome sequencing has huge potential as a tool to better understand infection transmission. However, rapidly identifying closely related genomes among a background of thousands of other genomes is challenging. Here, we describe a refinement to core genome multilocus sequence typing (cgMLST) in which alleles at each gene are reproducibly converted to a unique hash, or short string of letters (hash-cgMLST). This avoids the resource-intensive need for a single centralized database of sequentially numbered alleles. We test the reproducibility and discriminatory power of cgMLST/hash-cgMLST compared to those of mapping-based approaches in Clostridium difficile, using repeated sequencing of the same isolates (replicates) and data from consecutive infection isolates from six English hospitals. Hash-cgMLST provided the same results as standard cgMLST, with minimal performance penalty. Comparing 272 replicate sequence pairs using reference-based mapping, there were 0, 1, or 2 single-nucleotide polymorphisms (SNPs) between 262 (96%), 5 (2%), and 1 (<1%) of the pairs, respectively. Using hash-cgMLST, 218 (80%) of replicate pairs assembled with SPAdes had zero gene differences, and 31 (11%), 5 (2%), and 18 (7%) pairs had 1, 2, and >2 differences, respectively. False gene differences were clustered in specific genes and associated with fragmented assemblies, but were reduced using the SKESA assembler. Considering 412 pairs of infections with ≤2 SNPS, i.e., consistent with recent transmission, 376 (91%) had ≤2 gene differences and 16 (4%) had ≥4. Comparing a genome to 100,000 others took <1 min using hash-cgMLST. Hash-cgMLST is an effective surveillance tool for rapidly identifying clusters of related genomes. However, cgMLST/hash-cgMLST generate more false variants than mapping-based approaches. Follow-up mapping-based analyses are likely required to precisely define close genetic relationships.


Subject(s)
Clostridioides difficile/classification , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Genome, Bacterial , Multilocus Sequence Typing , Computational Biology/methods , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Whole Genome Sequencing
16.
J Antimicrob Chemother ; 74(4): 1092-1100, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30561656

ABSTRACT

OBJECTIVES: Rates of Clostridioides (Clostridium) difficile infection (CDI) are higher in North Wales than elsewhere in the UK. We used WGS to investigate if this is due to increased healthcare-associated transmission from other cases. METHODS: Healthcare and community C. difficile isolates from patients across North Wales (February-July 2015) from glutamate dehydrogenase (GDH)-positive faecal samples underwent WGS. Data from patient records, hospital management systems and national antimicrobial use surveillance were used. RESULTS: Of the 499 GDH-positive samples, 338 (68%) were sequenced and 299 distinct infections/colonizations were identified, 229/299 (77%) with toxin genes. Only 39/229 (17%) toxigenic isolates were related within ≤2 SNPs to ≥1 infections/colonizations from a previously sampled patient, i.e. demonstrated evidence of possible transmission. Independent predictors of possible transmission included healthcare exposure in the last 12 weeks (P = 0.002, with rates varying by hospital), infection with MLST types ST-1 (ribotype 027) and ST-11 (predominantly ribotype 078) compared with all other toxigenic STs (P < 0.001), and cephalosporin exposure in the potential transmission recipient (P = 0.02). Adjusting for all these factors, there was no additional effect of ward workload (P = 0.54) or failure to meet cleaning targets (P = 0.25). Use of antimicrobials is higher in North Wales compared with England and the rest of Wales. CONCLUSIONS: Levels of transmission detected by WGS were comparable to previously described rates in endemic settings; other explanations, such as variations in antimicrobial use, are required to explain the high levels of CDI. Cephalosporins are a risk factor for infection with C. difficile from another infected or colonized case.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Clostridium Infections/transmission , Whole Genome Sequencing , Clostridioides difficile/drug effects , Clostridium Infections/history , Clostridium Infections/microbiology , Feces/chemistry , Feces/microbiology , Female , Geography, Medical , History, 21st Century , Humans , Incidence , Male , Molecular Epidemiology , Public Health Surveillance , Risk Factors , Wales/epidemiology
17.
Bioinformatics ; 34(10): 1666-1671, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29240876

ABSTRACT

Motivation: Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymorphisms is sufficient to cause resistance, which yields low sensitivity for resistance classification. Summary: Given the availability of DNA sequencing data from MTB, we developed machine learning models for a cohort of 1839 UK bacterial isolates to classify MTB resistance against eight anti-TB drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, ciprofloxacin, moxifloxacin, ofloxacin, streptomycin) and to classify multi-drug resistance. Results: Compared to previous rules-based approach, the sensitivities from the best-performing models increased by 2-4% for isoniazid, rifampicin and ethambutol to 97% (P < 0.01), respectively; for ciprofloxacin and multi-drug resistant TB, they increased to 96%. For moxifloxacin and ofloxacin, sensitivities increased by 12 and 15% from 83 and 81% based on existing known resistance alleles to 95% and 96% (P < 0.01), respectively. Particularly, our models improved sensitivities compared to the previous rules-based approach by 15 and 24% to 84 and 87% for pyrazinamide and streptomycin (P < 0.01), respectively. The best-performing models increase the area-under-the-ROC curve by 10% for pyrazinamide and streptomycin (P < 0.01), and 4-8% for other drugs (P < 0.01). Availability and implementation: The details of source code are provided at http://www.robots.ox.ac.uk/~davidc/code.php. Contact: david.clifton@eng.ox.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Antitubercular Agents/therapeutic use , Machine Learning , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA/methods , Tuberculosis, Multidrug-Resistant/genetics , Ciprofloxacin/therapeutic use , Ethambutol/therapeutic use , Humans , Isoniazid/therapeutic use , Microbial Sensitivity Tests , Moxifloxacin/therapeutic use , Mycobacterium tuberculosis/classification , Ofloxacin/therapeutic use , Pyrazinamide/therapeutic use , Rifampin/therapeutic use , Streptomycin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy
18.
Clin Infect Dis ; 67(7): 1035-1044, 2018 09 14.
Article in English | MEDLINE | ID: mdl-29659747

ABSTRACT

Background: Rates of Clostridium difficile infection vary widely across Europe, as do prevalent ribotypes. The extent of Europe-wide diversity within each ribotype, however, is unknown. Methods: Inpatient diarrheal fecal samples submitted on a single day in summer and winter (2012-2013) to laboratories in 482 European hospitals were cultured for C. difficile, and isolates the 10 most prevalent ribotypes were whole-genome sequenced. Within each ribotype, country-based sequence clustering was assessed using the ratio of the median number of single-nucleotide polymorphisms between isolates within versus across different countries, using permutation tests. Time-scaled Bayesian phylogenies were used to reconstruct the historical location of each lineage. Results: Sequenced isolates (n = 624) were from 19 countries. Five ribotypes had within-country clustering: ribotype 356, only in Italy; ribotype 018, predominantly in Italy; ribotype 176, with distinct Czech and German clades; ribotype 001/072, including distinct German, Slovakian, and Spanish clades; and ribotype 027, with multiple predominantly country-specific clades including in Hungary, Italy, Germany, Romania, and Poland. By contrast, we found no within-country clustering for ribotypes 078, 015, 002, 014, and 020, consistent with a Europe-wide distribution. Fluoroquinolone resistance was significantly more common in within-country clustered ribotypes (P = .009). Fluoroquinolone-resistant isolates were also more tightly clustered geographically with a median (interquartile range) of 43 (0-213) miles between each isolate and the most closely genetically related isolate, versus 421 (204-680) miles in nonresistant pairs (P < .001). Conclusions: Two distinct patterns of C. difficile ribotype spread were observed, consistent with either predominantly healthcare-associated acquisition or Europe-wide dissemination via other routes/sources, for example, the food chain.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Cluster Analysis , Drug Resistance, Bacterial , Europe/epidemiology , Genetic Variation , Humans , Ribotyping
19.
BMC Genomics ; 19(1): 714, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30261842

ABSTRACT

BACKGROUND: Prosthetic joint infections are clinically difficult to diagnose and treat. Previously, we demonstrated metagenomic sequencing on an Illumina MiSeq replicates the findings of current gold standard microbiological diagnostic techniques. Nanopore sequencing offers advantages in speed of detection over MiSeq. Here, we report a real-time analytical pathway for Nanopore sequence data, designed for detecting bacterial composition of prosthetic joint infections but potentially useful for any microbial sequencing, and compare detection by direct-from-clinical-sample metagenomic nanopore sequencing with Illumina sequencing and standard microbiological diagnostic techniques. RESULTS: DNA was extracted from the sonication fluids of seven explanted orthopaedic devices, and additionally from two culture negative controls, and was sequenced on the Oxford Nanopore Technologies MinION platform. A specific analysis pipeline was assembled to overcome the challenges of identifying the true infecting pathogen, given high levels of host contamination and unavoidable background lab and kit contamination. The majority of DNA classified (> 90%) was host contamination and discarded. Using negative control filtering thresholds, the species identified corresponded with both routine microbiological diagnosis and MiSeq results. By analysing sequences in real time, causes of infection were robustly detected within minutes from initiation of sequencing. CONCLUSIONS: We demonstrate a novel, scalable pipeline for real-time analysis of MinION sequence data and use of this pipeline to show initial proof of concept that metagenomic MinION sequencing can provide rapid, accurate diagnosis for prosthetic joint infections. The high proportion of human DNA in prosthetic joint infection extracts prevents full genome analysis from complete coverage, and methods to reduce this could increase genome depth and allow antimicrobial resistance profiling. The nine samples sequenced in this pilot study have shown a proof of concept for sequencing and analysis that will enable us to investigate further sequencing to improve specificity and sensitivity.


Subject(s)
Bacteria/classification , Joint Prosthesis/microbiology , Metagenomics/methods , Sequence Analysis, DNA/methods , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/analysis , High-Throughput Nucleotide Sequencing/methods , Humans , Nanopores , Pilot Projects , Reproducibility of Results
20.
Lancet ; 390(10089): 62-72, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28499548

ABSTRACT

BACKGROUND: Weekend hospital admission is associated with increased mortality, but the contributions of varying illness severity and admission time to this weekend effect remain unexplored. METHODS: We analysed unselected emergency admissions to four Oxford University National Health Service hospitals in the UK from Jan 1, 2006, to Dec 31, 2014. The primary outcome was death within 30 days of admission (in or out of hospital), analysed using Cox models measuring time from admission. The primary exposure was day of the week of admission. We adjusted for multiple confounders including demographics, comorbidities, and admission characteristics, incorporating non-linearity and interactions. Models then considered the effect of adjusting for 15 common haematology and biochemistry test results or proxies for hospital workload. FINDINGS: 257 596 individuals underwent 503 938 emergency admissions. 18 313 (4·7%) patients admitted as weekday energency admissions and 6070 (5·1%) patients admitted as weekend emergency admissions died within 30 days (p<0·0001). 9347 individuals underwent 9707 emergency admissions on public holidays. 559 (5·8%) died within 30 days (p<0·0001 vs weekday). 15 routine haematology and biochemistry test results were highly prognostic for mortality. In 271 465 (53·9%) admissions with complete data, adjustment for test results explained 33% (95% CI 21 to 70) of the excess mortality associated with emergency admission on Saturdays compared with Wednesdays, 52% (lower 95% CI 34) on Sundays, and 87% (lower 95% CI 45) on public holidays after adjustment for standard patient characteristics. Excess mortality was predominantly restricted to admissions between 1100 h and 1500 h (pinteraction=0·04). No hospital workload measure was independently associated with mortality (all p values >0·06). INTERPRETATION: Adjustment for routine test results substantially reduced excess mortality associated with emergency admission at weekends and public holidays. Adjustment for patient-level factors not available in our study might further reduce the residual excess mortality, particularly as this clustered around midday at weekends. Hospital workload was not associated with mortality. Together, these findings suggest that the weekend effect arises from patient-level differences at admission rather than reduced hospital staffing or services. FUNDING: NIHR Oxford Biomedical Research Centre.


Subject(s)
After-Hours Care/statistics & numerical data , Hospitalization/statistics & numerical data , Mortality , Patient Admission/statistics & numerical data , Adult , Aged , Aged, 80 and over , Diagnosis-Related Groups/statistics & numerical data , Electronic Health Records , Emergencies , England/epidemiology , Female , Holidays , Hospital Mortality , Humans , Male , Middle Aged , Proportional Hazards Models , Risk Assessment/methods , State Medicine/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL