Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Immunity ; 55(11): 2059-2073.e8, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351375

ABSTRACT

T memory stem cells (TSCM) display increased self-renewal and prolonged survival capabilities, thus preventing T cell exhaustion and promoting effective anti-tumor T cell responses. TSCM cells can be expanded by Urolithin A (UA), which is produced by the commensal gut microbiome from foods rich in ellagitannins and is known to improve mitochondrial health. Oral UA administration to tumor-bearing mice conferred strong anti-tumor CD8+ T cell immunity, whereas ex vivo UA pre-treated T cells displayed improved anti-tumor function upon adoptive cell transfer. UA-induced TSCM formation depended on Pink1-mediated mitophagy triggering cytosolic release of the mitochondrial phosphatase Pgam5. Cytosolic Pgam5 dephosphorylated ß-catenin, which drove Wnt signaling and compensatory mitochondrial biogenesis. Collectively, we unravel a critical signaling pathway linking mitophagy to TSCM formation and suggest that the well-tolerated metabolic compound UA represents an attractive option to improve immune therapy.


Subject(s)
Coumarins , Mitophagy , Mice , Animals , Coumarins/pharmacology , Wnt Signaling Pathway , Stem Cells , Immunologic Memory
2.
Nature ; 612(7939): 347-353, 2022 12.
Article in English | MEDLINE | ID: mdl-36385525

ABSTRACT

Solid cancers exhibit a dynamic balance between cell death and proliferation ensuring continuous tumour maintenance and growth1,2. Increasing evidence links enhanced cancer cell apoptosis to paracrine activation of cells in the tumour microenvironment initiating tissue repair programs that support tumour growth3,4, yet the direct effects of dying cancer cells on neighbouring tumour epithelia and how this paracrine effect potentially contributes to therapy resistance are unclear. Here we demonstrate that chemotherapy-induced tumour cell death in patient-derived colorectal tumour organoids causes ATP release triggering P2X4 (also known as P2RX4) to mediate an mTOR-dependent pro-survival program in neighbouring cancer cells, which renders surviving tumour epithelia sensitive to mTOR inhibition. The induced mTOR addiction in persisting epithelial cells is due to elevated production of reactive oxygen species and subsequent increased DNA damage in response to the death of neighbouring cells. Accordingly, inhibition of the P2X4 receptor or direct mTOR blockade prevents induction of S6 phosphorylation and synergizes with chemotherapy to cause massive cell death induced by reactive oxygen species and marked tumour regression that is not seen when individually applied. Conversely, scavenging of reactive oxygen species prevents cancer cells from becoming reliant on mTOR activation. Collectively, our findings show that dying cancer cells establish a new dependency on anti-apoptotic programs in their surviving neighbours, thereby creating an opportunity for combination therapy in P2X4-expressing epithelial tumours.


Subject(s)
Colonic Neoplasms , Organoids , Humans , Reactive Oxygen Species , Cause of Death , Cell Death , Tumor Microenvironment , TOR Serine-Threonine Kinases
3.
Nature ; 546(7657): 302-306, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28562582

ABSTRACT

Similar to resting mature B cells, where the B-cell antigen receptor (BCR) controls cellular survival, surface BCR expression is conserved in most mature B-cell lymphomas. The identification of activating BCR mutations and the growth disadvantage upon BCR knockdown of cells of certain lymphoma entities has led to the view that BCR signalling is required for tumour cell survival. Consequently, the BCR signalling machinery has become an established target in the therapy of B-cell malignancies. Here we study the effects of BCR ablation on MYC-driven mouse B-cell lymphomas and compare them with observations in human Burkitt lymphoma. Whereas BCR ablation does not, per se, significantly affect lymphoma growth, BCR-negative (BCR-) tumour cells rapidly disappear in the presence of their BCR-expressing (BCR+) counterparts in vitro and in vivo. This requires neither cellular contact nor factors released by BCR+ tumour cells. Instead, BCR loss induces the rewiring of central carbon metabolism, increasing the sensitivity of receptor-less lymphoma cells to nutrient restriction. The BCR attenuates glycogen synthase kinase 3 beta (GSK3ß) activity to support MYC-controlled gene expression. BCR- tumour cells exhibit increased GSK3ß activity and are rescued from their competitive growth disadvantage by GSK3ß inhibition. BCR- lymphoma variants that restore competitive fitness normalize GSK3ß activity after constitutive activation of the MAPK pathway, commonly through Ras mutations. Similarly, in Burkitt lymphoma, activating RAS mutations may propagate immunoglobulin-crippled tumour cells, which usually represent a minority of the tumour bulk. Thus, while BCR expression enhances lymphoma cell fitness, BCR-targeted therapies may profit from combinations with drugs targeting BCR- tumour cells.


Subject(s)
B-Lymphocytes/metabolism , Genes, myc , Genetic Fitness , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Lymphoma/genetics , Lymphoma/metabolism , Receptors, Antigen, B-Cell/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Burkitt Lymphoma/genetics , Burkitt Lymphoma/immunology , Burkitt Lymphoma/pathology , Carbon/metabolism , Female , Gene Expression Regulation, Neoplastic , Genes, ras/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Lymphoma/enzymology , Lymphoma/pathology , MAP Kinase Signaling System , Male , Mice , Mutation , Receptors, Antigen, B-Cell/deficiency , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Tumor Cells, Cultured
4.
Immunol Cell Biol ; 93(3): 253-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25601271

ABSTRACT

B-cell development is a multistep process sustained by a highly coordinated transcriptional network under the control of a limited set of transcription factors. Epigenetic mechanisms, including DNA methylation, histone posttranslational modifications and microRNAs act in concert with transcription factors to promote lineage commitment, define and sustain cell identity and establish heritable cell-type- and stage-specific gene expression profiles. Epigenetic modifiers have recently emerged as key regulators of B-cell development and activation. Central to B-cell-mediated immunity are germinal centers, transient structures formed in secondary lymphoid organs where antigen-specific B cells undergo intense proliferation, immunoglobulin somatic hypermutation and isotype switching, to generate ultimately long-lived memory B cells and terminally differentiated plasma cells expressing high-affinity antibodies. Deregulation of one or more epigenetic axes represents a common feature of several B-cell disorders arising from germinal center B cells, including autoimmunity and lymphoma. Moreover, the hijacking of epigenetic determinants is central to the ability of the B-lymphotropic Epstein-Barr virus (EBV) to establish, via the germinal center reaction, life-long latency and occasionally contribute to malignant B-cell transformation. In the light of recent findings, this review will discuss the relevance of epigenetic deregulation in the pathogenesis of B-cell diseases. Understanding how specific epigenetic alterations contribute to the development of lymphomas, autoimmunity and EBV-associated disorders is instrumental to develop novel therapeutic interventions for the cure of these often fatal pathologies.


Subject(s)
Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Epigenesis, Genetic , Epstein-Barr Virus Infections/genetics , Lymphoma, B-Cell/genetics , Animals , Autoimmune Diseases/immunology , Carcinogenesis/genetics , Cell Differentiation , Epstein-Barr Virus Infections/immunology , Germinal Center/virology , Humans , Immunoglobulin Class Switching , Immunologic Memory , Lymphoma, B-Cell/immunology , Somatic Hypermutation, Immunoglobulin
5.
Plant J ; 74(3): 411-22, 2013 May.
Article in English | MEDLINE | ID: mdl-23410518

ABSTRACT

It has been suggested that, in Arabidopsis, auxin controls the timing of anther dehiscence, possibly by preventing premature endothecium lignification. We show here that auxin content in anthers peaks before the beginning of dehiscence and decreases when endothecium lignification occurs. We show that, in the auxin-perception mutants afb1-3 and tir1 afb2 afb3, endothecium lignification and anther dehiscence occur earlier than wild-type, and the gene encoding the transcription factor MYB26, which is required for endothecium lignification, is over-expressed specifically at early stages; in agreement, MYB26 expression is reduced in naphthalene acetic acid-treated anthers, and afb1 myb26 double mutants show no endothecial lignification, suggesting that auxin acts through MYB26. As jasmonic acid (JA) controls anther dehiscence, we analysed how auxin and JA interact. In the JA-defective opr3 mutant, indehiscent anthers show normal timing of endothecium lignification, suggesting that JA does not control this event. We show that expression of the OPR3 and DAD1 JA biosynthetic genes is enhanced in afb1-3 and tir1 afb2 afb3 flower buds, but is reduced in naphthalene acetic acid-treated flower buds, suggesting that auxin negatively regulates JA biosynthesis. The double mutant afb1 opr3 shows premature endothecium lignification, as in afb1-3, and indehiscent anthers due to lack of JA, which is required for stomium opening. By treating afb1 opr3 and opr3 inflorescences with JA, we show that a high JA content and precocious endothecium lignification both contribute to induction of early anther dehiscence. We propose that auxin controls anther dehiscence timing by negatively regulating two key events: endothecium lignification via MYB26, and stomium opening via the control of JA biosynthesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Cyclopentanes/metabolism , Flowers/physiology , Indoleacetic Acids/metabolism , Lignin/metabolism , Oxylipins/metabolism , Transcription Factors/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , F-Box Proteins/genetics , F-Box Proteins/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Naphthaleneacetic Acids/pharmacology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phospholipases A1/genetics , Phospholipases A1/metabolism , Plant Cells/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Time Factors , Transcription Factors/genetics
6.
Sci Adv ; 9(12): eadf2011, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36947627

ABSTRACT

The telomerase reverse transcriptase elongates telomeres to prevent replicative senescence. This process requires exposure of the 3'-end, which is thought to occur when two sister telomeres are generated at replication completion. Using two-dimensional agarose gel electrophoresis (2D-gels) and electron microscopy, we found that telomeric repeats are hotspots for replication fork reversal. Fork reversal generates 3' telomeric ends before replication completion. To verify whether these ends are elongated by telomerase, we probed de novo telomeric synthesis in situ and at replication intermediates by reconstituting mutant telomerase that adds a variant telomere sequence. We found variant telomeric repeats overlapping with telomeric reversed forks in 2D-gels, but not with normal forks, nontelomeric reversed forks, or telomeric reversed forks with a C-rich 3'-end. Our results define reversed telomeric forks as a substrate of telomerase during replication.


Subject(s)
Telomerase , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , DNA Replication
7.
Cancer Res ; 82(2): 210-220, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34737213

ABSTRACT

Colorectal cancer is among the leading causes of cancer-associated deaths worldwide. Treatment failure and tumor recurrence due to survival of therapy-resistant cancer stem/initiating cells represent major clinical issues to overcome. In this study, we identified lysine methyltransferase 9 (KMT9), an obligate heterodimer composed of KMT9α and KMT9ß that monomethylates histone H4 at lysine 12 (H4K12me1), as an important regulator in colorectal tumorigenesis. KMT9α and KMT9ß were overexpressed in colorectal cancer and colocalized with H4K12me1 at promoters of target genes involved in the regulation of proliferation. Ablation of KMT9α drastically reduced colorectal tumorigenesis in mice and prevented the growth of murine as well as human patient-derived tumor organoids. Moreover, loss of KMT9α impaired the maintenance and function of colorectal cancer stem/initiating cells and induced apoptosis specifically in this cellular compartment. Together, these data suggest that KMT9 is an important regulator of colorectal carcinogenesis, identifying KMT9 as a promising therapeutic target for the treatment of colorectal cancer. SIGNIFICANCE: The H4K12 methyltransferase KMT9 regulates tumor cell proliferation and stemness in colorectal cancer, indicating that targeting KMT9 could be a useful approach for preventing and treating this disease.


Subject(s)
Carcinogenesis/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Aged , Aged, 80 and over , Animals , Apoptosis/genetics , Case-Control Studies , Colorectal Neoplasms/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Protein Multimerization , RNA, Messenger/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/chemistry
8.
Cancer Cell ; 40(2): 168-184.e13, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35120600

ABSTRACT

Standard cancer therapy targets tumor cells without considering possible damage on the tumor microenvironment that could impair therapy response. In rectal cancer patients we find that inflammatory cancer-associated fibroblasts (iCAFs) are associated with poor chemoradiotherapy response. Employing a murine rectal cancer model or patient-derived tumor organoids and primary stroma cells, we show that, upon irradiation, interleukin-1α (IL-1α) not only polarizes cancer-associated fibroblasts toward the inflammatory phenotype but also triggers oxidative DNA damage, thereby predisposing iCAFs to p53-mediated therapy-induced senescence, which in turn results in chemoradiotherapy resistance and disease progression. Consistently, IL-1 inhibition, prevention of iCAFs senescence, or senolytic therapy sensitizes mice to irradiation, while lower IL-1 receptor antagonist serum levels in rectal patients correlate with poor prognosis. Collectively, we unravel a critical role for iCAFs in rectal cancer therapy resistance and identify IL-1 signaling as an attractive target for stroma-repolarization and prevention of cancer-associated fibroblasts senescence.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Drug Resistance, Neoplasm , Rectal Neoplasms/metabolism , Tumor Microenvironment , Animals , Biomarkers , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cytokines/genetics , Cytokines/metabolism , DNA Damage , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Heterografts , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Mice , Neoadjuvant Therapy , Prognosis , Rectal Neoplasms/drug therapy , Rectal Neoplasms/etiology , Rectal Neoplasms/pathology , Signal Transduction , Tumor Microenvironment/genetics
9.
J Exp Med ; 217(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32749453

ABSTRACT

Recently, a transcriptome-based consensus molecular subtype (CMS) classification of colorectal cancer (CRC) has been established, which may ultimately help to individualize CRC therapy. However, the lack of animal models that faithfully recapitulate the different molecular subtypes impedes adequate preclinical testing of stratified therapeutic concepts. Here, we demonstrate that constitutive AKT activation in intestinal epithelial cells markedly enhances tumor invasion and metastasis in Trp53ΔIEC mice (Trp53ΔIECAktE17K) upon challenge with the carcinogen azoxymethane. Gene-expression profiling indicates that Trp53ΔIECAktE17K tumors resemble the human mesenchymal colorectal cancer subtype (CMS4), which is characterized by the poorest survival rate among the four CMSs. Trp53ΔIECAktE17K tumor cells are characterized by Notch3 up-regulation, and treatment of Trp53ΔIECAktE17K mice with a NOTCH3-inhibiting antibody reduces invasion and metastasis. In CRC patients, NOTCH3 expression correlates positively with tumor grading and the presence of lymph node as well as distant metastases and is specifically up-regulated in CMS4 tumors. Therefore, we suggest NOTCH3 as a putative target for advanced CMS4 CRC patients.


Subject(s)
Colorectal Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch3/metabolism , Animals , Colorectal Neoplasms/pathology , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Signal Transduction , Transcriptome , Up-Regulation
10.
Methods Mol Biol ; 1623: 209-231, 2017.
Article in English | MEDLINE | ID: mdl-28589359

ABSTRACT

The germinal center (GC) reaction represents an essential phase of an adaptive immune response. Dysfunction of GC B cells can lead to life-threatening diseases including autoimmune disorders, lymphomas, and opportunistic infections. Defining the molecular circuitries controlling GC B cell physiology is crucial to understand the pathogenesis of GC B cell disorders, as well as to develop improved vaccines against foreign pathogens. Conditional gene targeting based on the Cre/loxP recombination system has substantially accelerated our comprehension of the genetic networks controlling GC B cell function. Several independent studies in the past 10 years have highlighted the many advantages and the few limitations and pitfalls associated to conditional gene manipulation in GC B cells using the Cre/loxP recombination system. Here, we describe the basic features of GC B cell-specific gene targeting experiments. We provide indications on the type of Cre transgene and controls to be chosen, way-out strategies to overcome leakiness of the Cre/loxP system, and approaches to minimize the number of experimental animals and to speed up analyses on conditional mutant GC B cells.


Subject(s)
Adaptive Immunity/genetics , B-Lymphocytes/metabolism , Gene Targeting , Germinal Center/cytology , Germinal Center/metabolism , Alleles , Animals , Apoptosis , B-Lymphocytes/immunology , Cell Line , Chromatin Immunoprecipitation , Epigenesis, Genetic , Female , Flow Cytometry , Genetic Association Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Germinal Center/immunology , Histones , Homologous Recombination , Immunization , Integrases/genetics , Integrases/metabolism , Male , Mice , Mutation , Somatic Hypermutation, Immunoglobulin , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL