Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 19(9): e1010921, 2023 09.
Article in English | MEDLINE | ID: mdl-37676898

ABSTRACT

Transcriptome-wide association studies (TWAS) aim to detect relationships between gene expression and a phenotype, and are commonly used for secondary analysis of genome-wide association study (GWAS) results. Results from TWAS analyses are often interpreted as indicating a genetic relationship between gene expression and a phenotype, but this interpretation is not consistent with the null hypothesis that is evaluated in the traditional TWAS framework. In this study we provide a mathematical outline of this TWAS framework, and elucidate what interpretations are warranted given the null hypothesis it actually tests. We then use both simulations and real data analysis to assess the implications of misinterpreting TWAS results as indicative of a genetic relationship between gene expression and the phenotype. Our simulation results show considerably inflated type 1 error rates for TWAS when interpreted this way, with 41% of significant TWAS associations detected in the real data analysis found to have insufficient statistical evidence to infer such a relationship. This demonstrates that in current implementations, TWAS cannot reliably be used to investigate genetic relationships between gene expression and a phenotype, but that local genetic correlation analysis can serve as a potential alternative.


Subject(s)
Genome-Wide Association Study , Transcriptome , Transcriptome/genetics , Chromosome Mapping , Computer Simulation , Data Analysis
2.
Nat Rev Genet ; 20(10): 567-581, 2019 10.
Article in English | MEDLINE | ID: mdl-31171865

ABSTRACT

The genetic correlation describes the genetic relationship between two traits and can contribute to a better understanding of the shared biological pathways and/or the causality relationships between them. The rarity of large family cohorts with recorded instances of two traits, particularly disease traits, has made it difficult to estimate genetic correlations using traditional epidemiological approaches. However, advances in genomic methodologies, such as genome-wide association studies, and widespread sharing of data now allow genetic correlations to be estimated for virtually any trait pair. Here, we review the definition, estimation, interpretation and uses of genetic correlations, with a focus on applications to human disease.


Subject(s)
Disease , Genome-Wide Association Study , Humans , Models, Genetic , Multifactorial Inheritance , Phenotype
3.
Mol Psychiatry ; 25(7): 1430-1446, 2020 07.
Article in English | MEDLINE | ID: mdl-31969693

ABSTRACT

Depression is more frequent among individuals exposed to traumatic events. Both trauma exposure and depression are heritable. However, the relationship between these traits, including the role of genetic risk factors, is complex and poorly understood. When modelling trauma exposure as an environmental influence on depression, both gene-environment correlations and gene-environment interactions have been observed. The UK Biobank concurrently assessed Major Depressive Disorder (MDD) and self-reported lifetime exposure to traumatic events in 126,522 genotyped individuals of European ancestry. We contrasted genetic influences on MDD stratified by reported trauma exposure (final sample size range: 24,094-92,957). The SNP-based heritability of MDD with reported trauma exposure (24%) was greater than MDD without reported trauma exposure (12%). Simulations showed that this is not confounded by the strong, positive genetic correlation observed between MDD and reported trauma exposure. We also observed that the genetic correlation between MDD and waist circumference was only significant in individuals reporting trauma exposure (rg = 0.24, p = 1.8 × 10-7 versus rg = -0.05, p = 0.39 in individuals not reporting trauma exposure, difference p = 2.3 × 10-4). Our results suggest that the genetic contribution to MDD is greater when reported trauma is present, and that a complex relationship exists between reported trauma exposure, body composition, and MDD.


Subject(s)
Databases, Factual , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Gene-Environment Interaction , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Psychological Trauma/epidemiology , Self Report , Adult , Aged , Female , Humans , Male , Middle Aged , United Kingdom/epidemiology , Waist Circumference
5.
PLoS Genet ; 13(4): e1006528, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28448500

ABSTRACT

Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.


Subject(s)
Adiposity/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Exercise , Obesity/genetics , Adiposity/physiology , Body Mass Index , Epigenomics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Obesity/physiopathology , Waist Circumference , Waist-Hip Ratio
6.
Am J Hum Genet ; 98(2): 382-91, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26849113

ABSTRACT

Genome-wide association studies (GWASs) are an optimal design for discovery of disease risk loci for diseases whose underlying genetic architecture includes many common causal loci of small effect (a polygenic architecture). We consider two designs that deserve careful consideration if the true underlying genetic architecture of the trait is polygenic: parent-offspring trios and unscreened control subjects. We assess these designs in terms of quantification of the total contribution of genome-wide genetic markers to disease risk (SNP heritability) and power to detect an associated risk allele. First, we show that trio designs should be avoided when: (1) the disease has a lifetime risk > 1%; (2) trio probands are ascertained from families with more than one affected sibling under which scenario the SNP heritability can drop by more than 50% and power can drop as much as from 0.9 to 0.15 for a sample of 20,000 subjects; or (3) assortative mating occurs (spouse correlation of the underlying liability to the disorder), which decreases the SNP heritability but not the power to detect a single locus in the trio design. Some studies use unscreened rather than screened control subjects because these can be easier to collect; we show that the estimated SNP heritability should then be scaled by dividing by (1 - K × u)(2) for disorders with population prevalence K and proportion of unscreened control subjects u. When omitting to scale appropriately, the SNP heritability of, for example, major depressive disorder (K = 0.15) would be underestimated by 28% when none of the control subjects are screened.


Subject(s)
Genetic Association Studies/methods , Alleles , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/genetics , Gene Frequency , Genetic Loci , Genetic Markers , Genetic Predisposition to Disease , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
7.
Am J Med Genet B Neuropsychiatr Genet ; 180(6): 439-447, 2019 09.
Article in English | MEDLINE | ID: mdl-30708398

ABSTRACT

Major depressive disorder (MDD) is clinically heterogeneous with prevalence rates twice as high in women as in men. There are many possible sources of heterogeneity in MDD most of which are not measured in a sufficiently comparable way across study samples. Here, we assess genetic heterogeneity based on two fundamental measures, between-cohort and between-sex heterogeneity. First, we used genome-wide association study (GWAS) summary statistics to investigate between-cohort genetic heterogeneity using the 29 research cohorts of the Psychiatric Genomics Consortium (PGC; N cases = 16,823, N controls = 25,632) and found that some of the cohort heterogeneity can be attributed to ascertainment differences (such as recruitment of cases from hospital vs. community sources). Second, we evaluated between-sex genetic heterogeneity using GWAS summary statistics from the PGC, Kaiser Permanente GERA, UK Biobank, and the Danish iPSYCH studies but did not find convincing evidence for genetic differences between the sexes. We conclude that there is no evidence that the heterogeneity between MDD data sets and between sexes reflects genetic heterogeneity. Larger sample sizes with detailed phenotypic records and genomic data remain the key to overcome heterogeneity inherent in assessment of MDD.


Subject(s)
Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Adult , Case-Control Studies , Cohort Effect , Cohort Studies , Databases, Genetic , Depressive Disorder, Major/physiopathology , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Prevalence , Risk Factors , Sex Factors
8.
Am J Med Genet B Neuropsychiatr Genet ; 177(1): 40-49, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29159863

ABSTRACT

Gene by environment (GxE) interaction studies have investigated the influence of a number of candidate genes and variants for major depressive disorder (MDD) on the association between childhood trauma and MDD. Most of these studies are hypothesis driven and investigate only a limited number of SNPs in relevant pathways using differing methodological approaches. Here (1) we identified 27 genes and 268 SNPs previously associated with MDD or with GxE interaction in MDD and (2) analyzed their impact on GxE in MDD using a common approach in 3944 subjects of European ancestry from the Psychiatric Genomics Consortium who had completed the Childhood Trauma Questionnaire. (3) We subsequently used the genome-wide SNP data for a genome-wide case-control GxE model and GxE case-only analyses testing for an enrichment of associated SNPs. No genome-wide significant hits and no consistency among the signals of the different analytic approaches could be observed. This is the largest study for systematic GxE interaction analysis in MDD in subjects of European ancestry to date. Most of the known candidate genes/variants could not be supported. Thus, their impact on GxE interaction in MDD may be questionable. Our results underscore the need for larger samples, more extensive assessment of environmental exposures, and greater efforts to investigate new methodological approaches in GxE models for MDD.


Subject(s)
Depression/genetics , Depressive Disorder, Major/genetics , Case-Control Studies , Depression/etiology , Depressive Disorder, Major/etiology , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Life Change Events , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors , White People/genetics
10.
Br J Psychiatry ; 205(2): 113-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24925986

ABSTRACT

BACKGROUND: Research on gene × environment interaction in major depressive disorder (MDD) has thus far primarily focused on candidate genes, although genetic effects are known to be polygenic. AIMS: To test whether the effect of polygenic risk scores on MDD is moderated by childhood trauma. METHOD: The study sample consisted of 1645 participants with a DSM-IV diagnosis of MDD and 340 screened controls from The Netherlands. Chronic or remitted episodes (severe MDD) were present in 956 participants. The occurrence of childhood trauma was assessed with the Childhood Trauma Interview and the polygenic risk scores were based on genome-wide meta-analysis results from the Psychiatric Genomics Consortium. RESULTS: The polygenic risk scores and childhood trauma independently affected MDD risk, and evidence was found for interaction as departure from both multiplicativity and additivity, indicating that the effect of polygenic risk scores on depression is increased in the presence of childhood trauma. The interaction effects were similar in predicting all MDD risk and severe MDD risk, and explained a proportion of variation in MDD risk comparable to the polygenic risk scores themselves. CONCLUSIONS: The interaction effect found between polygenic risk scores and childhood trauma implies that (1) studies on direct genetic effect on MDD gain power by focusing on individuals exposed to childhood trauma, and that (2) individuals with both high polygenic risk scores and exposure to childhood trauma are particularly at risk for developing MDD.


Subject(s)
Adult Survivors of Child Abuse/statistics & numerical data , Child Abuse/statistics & numerical data , Depressive Disorder, Major/epidemiology , Adult , Case-Control Studies , Child , Depressive Disorder, Major/genetics , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Humans , Longitudinal Studies , Male , Middle Aged , Netherlands/epidemiology , Risk Assessment , Risk Factors
11.
medRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260678

ABSTRACT

Polygenic Scores (PGSs) summarize an individual's genetic propensity for a given trait in a single value, based on SNP effect sizes derived from Genome-Wide Association Study (GWAS) results. Methods have been developed that apply Bayesian approaches to improve the prediction accuracy of PGSs through optimization of estimated effect sizes. While these methods are generally well-calibrated for continuous traits (implying the predicted values are on average equal to the true trait values), they are not well-calibrated for binary disorder traits in ascertained samples. This is a problem because well-calibrated PGSs are needed to reliably compute the absolute disorder probability for an individual to facilitate future clinical implementation. Here we introduce the Bayesian polygenic score Probability Conversion (BPC) approach, which computes an individual's predicted disorder probability using GWAS summary statistics, an existing Bayesian PGS method (e.g. PRScs, SBayesR), the individual's genotype data, and a prior disorder probability. The BPC approach transforms the PGS to its underlying liability scale, computes the variances of the PGS in cases and controls, and applies Bayes' Theorem to compute the absolute disorder probability; it is practical in its application as it does not require a tuning dataset with both genotype and phenotype data. We applied the BPC approach to extensive simulated data and empirical data of nine disorders. The BPC approach yielded well-calibrated results that were consistently better than the results of another recently published approach.

12.
medRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352307

ABSTRACT

Despite great progress on methods for case-control polygenic prediction (e.g. schizophrenia vs. control), there remains an unmet need for a method that genetically distinguishes clinically related disorders (e.g. schizophrenia (SCZ) vs. bipolar disorder (BIP) vs. depression (MDD) vs. control); such a method could have important clinical value, especially at disorder onset when differential diagnosis can be challenging. Here, we introduce a method, Differential Diagnosis-Polygenic Risk Score (DDx-PRS), that jointly estimates posterior probabilities of each possible diagnostic category (e.g. SCZ=50%, BIP=25%, MDD=15%, control=10%) by modeling variance/covariance structure across disorders, leveraging case-control polygenic risk scores (PRS) for each disorder (computed using existing methods) and prior clinical probabilities for each diagnostic category. DDx-PRS uses only summary-level training data and does not use tuning data, facilitating implementation in clinical settings. In simulations, DDx-PRS was well-calibrated (whereas a simpler approach that analyzes each disorder marginally was poorly calibrated), and effective in distinguishing each diagnostic category vs. the rest. We then applied DDx-PRS to Psychiatric Genomics Consortium SCZ/BIP/MDD/control data, including summary-level training data from 3 case-control GWAS ( N =41,917-173,140 cases; total N =1,048,683) and held-out test data from different cohorts with equal numbers of each diagnostic category (total N =11,460). DDx-PRS was well-calibrated and well-powered relative to these training sample sizes, attaining AUCs of 0.66 for SCZ vs. rest, 0.64 for BIP vs. rest, 0.59 for MDD vs. rest, and 0.68 for control vs. rest. DDx-PRS produced comparable results to methods that leverage tuning data, confirming that DDx-PRS is an effective method. True diagnosis probabilities in top deciles of predicted diagnosis probabilities were considerably larger than prior baseline probabilities, particularly in projections to larger training sample sizes, implying considerable potential for clinical utility under certain circumstances. In conclusion, DDx-PRS is an effective method for distinguishing clinically related disorders.

13.
Br J Psychiatry ; 203(2): 132-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23787062

ABSTRACT

BACKGROUND: Thus far collaborative stepped care (CSC) studies have not incorporated self-help as a first step. AIMS: To evaluate the effectiveness of CSC in the treatment of common mental disorders. METHOD: An 8-month cluster randomised controlled trial comparing CSC to care as usual (CAU) (Dutch Trial Register identifier NTR1224). The CSC consisted of a stepped care approach guided by a psychiatric nurse in primary care with the addition of antidepressants dependent on the severity of the disorder, followed by cognitive-behavioural therapy in mental healthcare. RESULTS: Twenty general practitioners (GPs) and 8 psychiatric nurses were randomised to provide CSC or CAU. The GPs recruited 163 patients of whom 85% completed the post-test measurements. At 4-month mid-test CSC was superior to CAU: 74.7% (n = 68) v. 50.8% (n = 31) responders (P = 0.003). At 8-month post-test and 12-month follow-up no significant differences were found as the patients in the CAU group improved as well. CONCLUSIONS: Treatment within a CSC model resulted in an earlier treatment response compared with CAU.


Subject(s)
Anxiety Disorders/therapy , Cognitive Behavioral Therapy/methods , Depressive Disorder/therapy , Patient Care Team , Self Care , Adult , Anxiety Disorders/psychology , Depressive Disorder/psychology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Primary Health Care , Treatment Outcome
14.
JAMA Psychiatry ; 80(2): 181-185, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36542388

ABSTRACT

Importance: Predictors consistently associated with psychosis liability and course of illness in schizophrenia (SCZ) spectrum disorders (SSD), including the need for clozapine treatment, are lacking. Longitudinally ascertained medication use may empower studies examining associations between polygenic risk scores (PRSs) and pharmacotherapy choices. Objective: To examine associations between PRS-SCZ loading and groups with different liabilities to SSD (individuals with SSD taking clozapine, individuals with SSD taking other antipsychotics, their parents and siblings, and unrelated healthy controls) and between PRS-SCZ and the likelihood of receiving a prescription of clozapine relative to other antipsychotics. Design, Setting, and Participants: This genetic association study was a multicenter, observational cohort study with 6 years of follow-up. Included were individuals diagnosed with SSD who were taking clozapine or other antipsychotics, their parents and siblings, and unrelated healthy controls. Data were collected from 2004 until 2021 and analyzed between October 2021 and September 2022. Exposures: Polygenic risk scores for SCZ. Main Outcomes and Measures: Multinomial logistic regression was used to examine possible differences between groups by computing risk ratios (RRs), ie, ratios of the probability of pertaining to a particular group divided by the probability of healthy control status. We also computed PRS-informed odd ratios (ORs) for clozapine use relative to other antipsychotics. Results: Polygenic risk scores for SCZ were generated for 2344 participants (mean [SD] age, 36.95 years [14.38]; 994 female individuals [42.4%]) who remained after quality control screening (557 individuals with SSD taking clozapine, 350 individuals with SSD taking other antipsychotics during the 6-year follow-up, 542 parents and 574 siblings of individuals with SSD, and 321 unrelated healthy controls). All RRs were significantly different from 1; RRs were highest for individuals with SSD taking clozapine (RR, 3.24; 95% CI, 2.76-3.81; P = 2.47 × 10-46), followed by individuals with SSD taking other antipsychotics (RR, 2.30; 95% CI, 1.95-2.72; P = 3.77 × 10-22), parents (RR, 1.44; 95% CI, 1.25-1.68; P = 1.76 × 10-6), and siblings (RR, 1.40; 95% CI, 1.21-1.63; P = 8.22 × 10-6). Polygenic risk scores for SCZ were positively associated with clozapine vs other antipsychotic use (OR, 1.41; 95% CI, 1.22-1.63; P = 2.98 × 10-6), suggesting a higher likelihood of clozapine prescriptions among individuals with higher PRS-SCZ. Conclusions and Relevance: In this study, PRS-SCZ loading differed between groups of individuals with SSD, their relatives, and unrelated healthy controls, with patients taking clozapine at the far end of PRS-SCZ loading. Additionally, PRS-SCZ was associated with a higher likelihood of clozapine prescribing. Our findings may inform early intervention and prognostic studies of the value of using PRS-SCZ to personalize antipsychotic treatment.


Subject(s)
Antipsychotic Agents , Clozapine , Psychotic Disorders , Schizophrenia , Humans , Female , Adult , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/diagnosis , Clozapine/adverse effects , Antipsychotic Agents/adverse effects , Psychotic Disorders/drug therapy , Psychotic Disorders/genetics , Psychotic Disorders/diagnosis , Risk Factors , Multifactorial Inheritance/genetics
15.
Biol Psychiatry ; 94(12): 948-958, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37330166

ABSTRACT

BACKGROUND: The ability to predict the disease course of individuals with major depressive disorder (MDD) is essential for optimal treatment planning. Here, we used a data-driven machine learning approach to assess the predictive value of different sets of biological data (whole-blood proteomics, lipid metabolomics, transcriptomics, genetics), both separately and added to clinical baseline variables, for the longitudinal prediction of 2-year remission status in MDD at the individual-subject level. METHODS: Prediction models were trained and cross-validated in a sample of 643 patients with current MDD (2-year remission n = 325) and subsequently tested for performance in 161 individuals with MDD (2-year remission n = 82). RESULTS: Proteomics data showed the best unimodal data predictions (area under the receiver operating characteristic curve = 0.68). Adding proteomic to clinical data at baseline significantly improved 2-year MDD remission predictions (area under the receiver operating characteristic curve = 0.63 vs. 0.78, p = .013), while the addition of other omics data to clinical data did not yield significantly improved model performance. Feature importance and enrichment analysis revealed that proteomic analytes were involved in inflammatory response and lipid metabolism, with fibrinogen levels showing the highest variable importance, followed by symptom severity. Machine learning models outperformed psychiatrists' ability to predict 2-year remission status (balanced accuracy = 71% vs. 55%). CONCLUSIONS: This study showed the added predictive value of combining proteomic data, but not other omics data, with clinical data for the prediction of 2-year remission status in MDD. Our results reveal a novel multimodal signature of 2-year MDD remission status that shows clinical potential for individual MDD disease course predictions from baseline measurements.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Follow-Up Studies , Depression , Proteomics , Disease Progression
16.
Nat Genet ; 54(4): 450-458, 2022 04.
Article in English | MEDLINE | ID: mdl-35393596

ABSTRACT

Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Linkage Disequilibrium , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
17.
Nat Genet ; 53(4): 445-454, 2021 04.
Article in English | MEDLINE | ID: mdl-33686288

ABSTRACT

Psychiatric disorders are highly genetically correlated, but little research has been conducted on the genetic differences between disorders. We developed a new method (case-case genome-wide association study; CC-GWAS) to test for differences in allele frequency between cases of two disorders using summary statistics from the respective case-control GWAS, transcending current methods that require individual-level data. Simulations and analytical computations confirm that CC-GWAS is well powered with effective control of type I error. We applied CC-GWAS to publicly available summary statistics for schizophrenia, bipolar disorder, major depressive disorder and five other psychiatric disorders. CC-GWAS identified 196 independent case-case loci, including 72 CC-GWAS-specific loci that were not significant at the genome-wide level in the input case-control summary statistics; two of the CC-GWAS-specific loci implicate the genes KLF6 and KLF16 (from the Krüppel-like family of transcription factors), which have been linked to neurite outgrowth and axon regeneration. CC-GWAS loci replicated convincingly in applications to datasets with independent replication data.


Subject(s)
Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Gene Frequency , Genetic Loci , Kruppel-Like Factor 6/genetics , Kruppel-Like Transcription Factors/genetics , Schizophrenia/genetics , Alleles , Axons/metabolism , Axons/pathology , Bipolar Disorder/metabolism , Bipolar Disorder/physiopathology , Case-Control Studies , Datasets as Topic , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Gene Expression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Kruppel-Like Factor 6/metabolism , Kruppel-Like Transcription Factors/metabolism , Neuronal Outgrowth/genetics , Polymorphism, Single Nucleotide , Schizophrenia/metabolism , Schizophrenia/physiopathology
18.
Transl Psychiatry ; 9(1): 219, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488809

ABSTRACT

Trials testing the effect of vitamin D or omega-3 polyunsaturated fatty acid (n3-PUFA) supplementation on major depressive disorder (MDD) reported conflicting findings. These trials were inspired by epidemiological evidence suggesting an inverse association of circulating 25-hydroxyvitamin D (25-OH-D) and n3-PUFA levels with MDD. Observational associations may emerge from unresolved confounding, shared genetic risk, or direct causal relationships. We explored the nature of these associations exploiting data and statistical tools from genomics. Results from genome-wide association studies on 25-OH-D (N = 79 366), n3-PUFA (N = 24 925), and MDD (135 458 cases, 344 901 controls) were applied to individual-level data (>2000 subjects with measures of genotype, DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th edition) lifetime MDD diagnoses and circulating 25-OH-D and n3-PUFA) and summary-level data analyses. Shared genetic risk between traits was tested by polygenic risk scores (PRS). Two-sample Mendelian Randomization (2SMR) analyses tested the potential bidirectional causality between traits. In individual-level data analyses, PRS were associated with the phenotype of the same trait (PRS 25-OH-D p = 1.4e - 20, PRS n3-PUFA p = 9.3e - 6, PRS MDD p = 1.4e - 4), but not with the other phenotypes, suggesting a lack of shared genetic effects. In summary-level data analyses, 2SMR analyses provided no evidence of a causal role on MDD of 25-OH-D (p = 0.50) or n3-PUFA (p = 0.16), or for a causal role of MDD on 25-OH-D (p = 0.25) or n3-PUFA (p = 0.66). Applying genomics tools indicated that shared genetic risk or direct causality between 25-OH-D, n3-PUFA, and MDD is unlikely: unresolved confounding may explain the associations reported in observational studies. These findings represent a cautionary tale for testing supplementation of these compounds in preventing or treating MDD.


Subject(s)
Depressive Disorder, Major/genetics , Fatty Acids, Omega-3/therapeutic use , Vitamin D/therapeutic use , Adult , Depressive Disorder, Major/drug therapy , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Multifactorial Inheritance , Pharmacogenetics
20.
Biol Psychiatry ; 84(2): 138-147, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29129318

ABSTRACT

BACKGROUND: The heterogeneity of genetic effects on major depressive disorder (MDD) may be partly attributable to moderation of genetic effects by environment, such as exposure to childhood trauma (CT). Indeed, previous findings in two independent cohorts showed evidence for interaction between polygenic risk scores (PRSs) and CT, albeit in opposing directions. This study aims to meta-analyze MDD-PRS × CT interaction results across these two and other cohorts, while applying more accurate PRSs based on a larger discovery sample. METHODS: Data were combined from 3024 MDD cases and 2741 control subjects from nine cohorts contributing to the MDD Working Group of the Psychiatric Genomics Consortium. MDD-PRS were based on a discovery sample of ∼110,000 independent individuals. CT was assessed as exposure to sexual or physical abuse during childhood. In a subset of 1957 cases and 2002 control subjects, a more detailed five-domain measure additionally included emotional abuse, physical neglect, and emotional neglect. RESULTS: MDD was associated with the MDD-PRS (odds ratio [OR] = 1.24, p = 3.6 × 10-5, R2 = 1.18%) and with CT (OR = 2.63, p = 3.5 × 10-18 and OR = 2.62, p = 1.4 ×10-5 for the two- and five-domain measures, respectively). No interaction was found between MDD-PRS and the two-domain and five-domain CT measure (OR = 1.00, p = .89 and OR = 1.05, p = .66). CONCLUSIONS: No meta-analytic evidence for interaction between MDD-PRS and CT was found. This suggests that the previously reported interaction effects, although both statistically significant, can best be interpreted as chance findings. Further research is required, but this study suggests that the genetic heterogeneity of MDD is not attributable to genome-wide moderation of genetic effects by CT.


Subject(s)
Child Abuse/psychology , Depressive Disorder, Major/genetics , Adult , Adult Survivors of Child Abuse/psychology , Case-Control Studies , Child , Depressive Disorder, Major/epidemiology , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Humans , Logistic Models , Male , Multifactorial Inheritance , Psychiatric Status Rating Scales , Risk Assessment , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL