Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 20(6)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183233

ABSTRACT

This paper presents the technological developments and the policy contexts for the project "Autonomous Robotic Sea-Floor Infrastructure for Bentho-Pelagic Monitoring" (ARIM). The development is based on the national experience with robotic component technologies that are combined and merged into a new product for autonomous and integrated ecological deep-sea monitoring. Traditional monitoring is often vessel-based and thus resource demanding. It is economically unviable to fulfill the current policy for ecosystem monitoring with traditional approaches. Thus, this project developed platforms for bentho-pelagic monitoring using an arrangement of crawler and stationary platforms at the Lofoten-Vesterålen (LoVe) observatory network (Norway). Visual and acoustic imaging along with standard oceanographic sensors have been combined to support advanced and continuous spatial-temporal monitoring near cold water coral mounds. Just as important is the automatic processing techniques under development that have been implemented to allow species (or categories of species) quantification (i.e., tracking and classification). At the same time, real-time outboard processed three-dimensional (3D) laser scanning has been implemented to increase mission autonomy capability, delivering quantifiable information on habitat features (i.e., for seascape approaches). The first version of platform autonomy has already been tested under controlled conditions with a tethered crawler exploring the vicinity of a cabled stationary instrumented garage. Our vision is that elimination of the tether in combination with inductive battery recharge trough fuel cell technology will facilitate self-sustained long-term autonomous operations over large areas, serving not only the needs of science, but also sub-sea industries like subsea oil and gas, and mining.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Oceanography/methods , Oceans and Seas , Acoustics/instrumentation , Animals , Anthozoa/physiology , Humans , Robotics/instrumentation , Video Recording/methods
2.
Front Microbiol ; 8: 169, 2017.
Article in English | MEDLINE | ID: mdl-28232821

ABSTRACT

The sediment-water interface is an important site for material exchange in marine systems and harbor unique microbial habitats. The flux of nutrients, metals, and greenhouse gases at this interface may be severely dampened by the activity of microorganisms and abiotic redox processes, leading to the "benthic filter" concept. In this study, we investigate the spatial variability, mechanisms and quantitative importance of a microbially-dominated benthic filter for dissolved sulfide in the Eastern Gotland Basin (Baltic Sea) that is located along a dynamic redox gradient between 65 and 173 m water depth. In August-September 2013, high resolution (0.25 mm minimum) vertical microprofiles of redox-sensitive species were measured in surface sediments with solid-state gold-amalgam voltammetric microelectrodes. The highest sulfide consumption (2.73-3.38 mmol m-2 day-1) occurred within the top 5 mm in sediments beneath a pelagic hypoxic transition zone (HTZ, 80-120 m water depth) covered by conspicuous white bacterial mats of genus Beggiatoa. A distinct voltammetric signal for polysulfides, a transient sulfur oxidation intermediate, was consistently observed within the mats. In sediments under anoxic waters (>140 m depth), signals for Fe(II) and aqueous FeS appeared below a subsurface maximum in dissolved sulfide, indicating a Fe(II) flux originating from older sediments presumably deposited during the freshwater Ancylus Lake that preceded the modern Baltic Sea. Our results point to a dynamic benthic sulfur cycling in Gotland Basin where benthic sulfide accumulation is moderated by microbial sulfide oxidation at the sediment surface and FeS precipitation in deeper sediment layers. Upscaling our fluxes to the Baltic Proper; we find that up to 70% of the sulfide flux (2281 kton yr-1) toward the sediment-seawater interface in the entire basin can be consumed at the microbial mats under the HTZ (80-120 m water depth) while only about 30% the sulfide flux effuses to the bottom waters (>120 m depth). This newly described benthic filter for the Gotland Basin must play a major role in limiting the accumulation of sulfide in and around the deep basins of the Baltic Sea.

3.
Naturwissenschaften ; 90(6): 273-6, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12835839

ABSTRACT

Rotifers, one of the smallest metazoans, are only seldom found in marine environments. Surprisingly, we discovered high abundances of at least two new species of rotifers settling in anoxic and highly sulphidic sediments associated with shallow gas hydrates (GH) at the southern crest of Hydrate Ridge off Oregon, NE Pacific, in a water depth of about 780 m. At basins adjacent to Hydrate Ridge, 1,285-2,304 m deep, we found rotifers co-occurring with the sulphide-oxidising bacteria Thioploca sp.


Subject(s)
Environment , Geologic Sediments/analysis , Animals , Population Density , Rotifera/growth & development , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL