Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Nature ; 590(7846): 401-404, 2021 02.
Article in English | MEDLINE | ID: mdl-33597757

ABSTRACT

Coherent control of quantum dynamics is key to a multitude of fundamental studies and applications1. In the visible or longer-wavelength domains, near-resonant light fields have become the primary tool with which to control electron dynamics2. Recently, coherent control in the extreme-ultraviolet range was demonstrated3, with a few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above 5-10 kiloelectronvolts), Mössbauer nuclei feature narrow nuclear resonances due to their recoilless absorption and emission of light, and spectroscopy of these resonances is widely used to study the magnetic, structural and dynamical properties of matter4,5. It has been shown that the power and scope of Mössbauer spectroscopy can be greatly improved using various control techniques6-16. However, coherent control of atomic nuclei using suitably shaped near-resonant X-ray fields remains an open challenge. Here we demonstrate such control, and use the tunable phase between two X-ray pulses to switch the nuclear exciton dynamics between coherent enhanced excitation and coherent enhanced emission. We present a method of shaping single pulses delivered by state-of-the-art X-ray facilities into tunable double pulses, and demonstrate a temporal stability of the phase control on the few-zeptosecond timescale. Our results unlock coherent optical control for nuclei, and pave the way for nuclear Ramsey spectroscopy17 and spin-echo-like techniques, which should not only advance nuclear quantum optics18, but also help to realize X-ray clocks and frequency standards19. In the long term, we envision time-resolved studies of nuclear out-of-equilibrium dynamics, which is a long-standing challenge in Mössbauer science20.

2.
Opt Express ; 31(24): 39821-39831, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041296

ABSTRACT

The precise temporal characterization of laser pulses is crucial for ultrashort applications in biology, chemistry, and physics. Especially in femto- and attosecond science, diverse laser pulse sources in different spectral regimes from the visible to the infrared as well as pulse durations ranging from picoseconds to few femtoseconds are employed. In this article, we present a versatile temporal-characterization apparatus that can access these different temporal and spectral regions in a dispersion-free manner and without phase-matching constraints. The design combines transient-grating and surface third-harmonic-generation frequency-resolved optical gating in one device with optimized alignment capabilities based on a noncollinear geometry.

3.
Phys Rev Lett ; 130(18): 183201, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37204888

ABSTRACT

Laser-driven recollision physics is typically accessible only at field intensities high enough for tunnel ionization. Using an extreme ultraviolet pulse for ionization and a near-infrared (NIR) pulse for driving of the electron wave packet lifts this limitation. This allows us to study recollisions for a broad range of NIR intensities with transient absorption spectroscopy, making use of the reconstruction of the time-dependent dipole moment. Comparing recollision dynamics with linear vs circular NIR polarization, we find a parameter space, where the latter favors recollisions, providing evidence for the so far only theoretically predicted recolliding periodic orbits.

4.
Phys Rev Lett ; 131(16): 161803, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925712

ABSTRACT

Optical frequency metrology in atoms and ions can probe hypothetical fifth forces between electrons and neutrons by sensing minute perturbations of the electronic wave function induced by them. A generalized King plot has been proposed to distinguish them from possible standard model effects arising from, e.g., finite nuclear size and electronic correlations. Additional isotopes and transitions are required for this approach. Xenon is an excellent candidate, with seven stable isotopes with zero nuclear spin, however it has no known visible ground-state transitions for high resolution spectroscopy. To address this, we have found and measured twelve magnetic-dipole lines in its highly charged ions and theoretically studied their sensitivity to fifth forces as well as the suppression of spurious higher-order standard model effects. Moreover, we identified at 764.8753(16) nm a E2-type ground-state transition with 500 s excited state lifetime as a potential clock candidate further enhancing our proposed scheme.

6.
Opt Express ; 30(8): 13630-13646, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472972

ABSTRACT

In this paper, a 3-dimensional photoelectron/ion momentum spectrometer (reaction microscope) combined with a table-top attosecond beamline based on a high-repetition rate (49 kHz) laser source is presented. The beamline is designed to achieve a temporal stability below 50 attoseconds. Results from measurements on systems like molecular hydrogen and argon dimers demonstrate the capabilities of this setup in observing the attosecond dynamics in 3D while covering the full solid angle for ionization processes having low cross-sections.

7.
Opt Express ; 30(25): 45020-45030, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522913

ABSTRACT

Tunable attosecond pulses are necessary for various attosecond resolved spectroscopic applications, which can potentially be obtained through the tuning of high harmonic generation. Here we show theoretically, using the time-dependent Schrödinger equation and strong field approximation, a continuously tunable spectral shift of high-order harmonics by exploiting the interaction of two delayed identical infrared (IR) pulses within the single-atom response. The tuning spans more than twice the driving frequency (∼2ω) range, for several near-cutoff harmonics, with respect to only one control parameter: the change in delay between the two IR pulses. We show that two distinct mechanisms contribute to the spectral shift of the harmonic spectra. The dominant part of the spectral shift of the harmonics is due to the modulation of the central frequency of the composite IR-IR pulse with respect to delay. The second contribution comes from the non-adiabatic phase-shift of the recolliding electron wavepacket due to the change in amplitude of the subcycle electric field within the double pulse envelope. For optical few-cycle pulses this scheme can produce tunable attosecond pulse trains (APT), and in the single-cycle regime the same can be used for tuning isolated attosecond pulses (IAP). We quantify the dependence of tuning range and tuning rate on the laser pulse duration. We envision that the proposed scheme can be easily implemented with compact in-line setups for generating frequency tunable APT/IAP.

8.
Phys Rev Lett ; 129(27): 273201, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36638297

ABSTRACT

We propose and study the manipulation of the macroscopic transient absorption of an ensemble of open two-level systems via temporal engineering. The key idea is to impose an ultrashort temporal gate on the polarization decay of the system by transient absorption spectroscopy, thus confining its free evolution and the natural reshaping of the excitation pulse. The numerical and analytical results demonstrate that even at moderate optical depths, the resonant absorption of light can be reduced or significantly enhanced by more than 5 orders of magnitude relative to that without laser manipulation. The achievement of the quasicomplete extinction of light at the resonant frequency, here referred to as resonant perfect absorption, arises from the full destructive interference between the excitation pulse and its subpulses developed and tailored during propagation, and is revealed to be connected with the formation of zero-area pulses in the time domain.

9.
Phys Rev Lett ; 128(15): 153001, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35499899

ABSTRACT

Electronic interactions play a fundamental role in atoms, molecular structure and reactivity. We introduce a general concept to control the effective electronic exchange interaction with intense laser fields via coupling to excited states. As an experimental proof of principle, we study the SF_{6} molecule using a combination of soft x-ray and infrared (IR) laser pulses. Increasing the IR intensity increases the effective exchange energy of the core hole with the excited electron by 50%, as observed by a characteristic spin-orbit branching ratio change. This work demonstrates altering electronic interactions by targeting many-particle quantum properties.

10.
Phys Rev Lett ; 129(18): 183204, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36374686

ABSTRACT

We report the measurement of the photoelectron angular distribution of two-photon single-ionization near the 2p^{2} ^{1}D^{e} double-excitation resonance in helium, benchmarking the fundamental nonlinear interaction of two photons with two correlated electrons. This observation is enabled by the unique combination of intense extreme ultraviolet pulses, delivered at the high-repetition-rate free-electron laser in Hamburg (FLASH), ionizing a jet of cryogenically cooled helium atoms in a reaction microscope. The spectral structure of the intense self-amplified spontaneous emission free-electron laser pulses has been resolved on a single-shot level to allow for post selection of pulses, leading to an enhanced spectral resolution, and introducing a new experimental method. The measured angular distribution is directly compared to state-of-the-art theory based on multichannel quantum defect theory and the streamlined R-matrix method. These results and experimental methodology open a promising route for exploring fundamental interactions of few photons with few electrons in general.

11.
Phys Rev Lett ; 129(24): 245001, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563261

ABSTRACT

One of the most enduring and intensively studied problems of x-ray astronomy is the disagreement of state-of-the art theory and observations for the intensity ratio of two Fe XVII transitions of crucial value for plasma diagnostics, dubbed 3C and 3D. We unravel this conundrum at the PETRA III synchrotron facility by increasing the resolving power 2.5 times and the signal-to-noise ratio thousandfold compared with our previous work. The Lorentzian wings had hitherto been indistinguishable from the background and were thus not modeled, resulting in a biased line-strength estimation. The present experimental oscillator-strength ratio R_{exp}=f_{3C}/f_{3D}=3.51(2)_{stat}(7)_{sys} agrees with our state-of-the-art calculation of R_{th}=3.55(2), as well as with some previous theoretical predictions. To further rule out any uncertainties associated with the measured ratio, we also determined the individual natural linewidths and oscillator strengths of 3C and 3D transitions, which also agree well with the theory. This finally resolves the decades-old mystery of Fe XVII oscillator strengths.

12.
Proc Natl Acad Sci U S A ; 116(17): 8173-8177, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30952783

ABSTRACT

Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS2) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS2 molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement. We invoke the Renner-Teller effect to populate the [Formula: see text] excited state in neutral CS2, leading to bending and stretching of the molecule. Our results demonstrate the sensitivity of LIED in retrieving the geometric structure of CS2, which is known to appear as a two-center scatterer.

13.
Faraday Discuss ; 228(0): 519-536, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33575691

ABSTRACT

The emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demonstrate an experimental setup for an all-XUV transient absorption spectroscopy method for gas-phase targets at the FEL. The setup combines a high spectral resolving power of E/ΔE ≈ 1500 with sub-femtosecond interferometric resolution, and covers a broad XUV photon-energy range between approximately 20 and 110 eV. We demonstrate the feasibility of this setup firstly on a neon target. Here, we intensity- and time-resolve key aspects of non-linear XUV-FEL light-matter interactions, namely the non-resonant ionization dynamics and resonant coupling dynamics of bound states, including XUV-induced Stark shifts of energy levels. Secondly, we show that this setup is capable of tracking the XUV-initiated dissociation dynamics of small molecular targets (oxygen and diiodomethane) with site-specific resolution, by measuring the XUV transient absorption spectrum. In general, benefitting from a single-shot detection capability, we show that the setup and method provides single-shot phase-locked XUV pulse pairs. This lays the foundation to perform, in the future, experiments as a function of the XUV interferometric time delay and the relative phase, which enables advanced coherent non-linear spectroscopy schemes in the XUV and X-ray spectral range.

14.
J Phys Chem A ; 125(47): 10138-10143, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34788037

ABSTRACT

We performed a time-resolved spectroscopy experiment on the dissociation of oxygen molecules after the interaction with intense extreme-ultraviolet (XUV) light from the free-electron laser in Hamburg at Deutsches Elektronen-Synchrotron. Using an XUV-pump/XUV-probe transient-absorption geometry with a split-and-delay unit, we observe the onset of electronic transitions in the O2+ cation near 50 eV photon energy, marking the end of the progression from a molecule to two isolated atoms. We observe two different time scales of 290 ± 53 and 180 ± 76 fs for the emergence of different ionic transitions, indicating different dissociation pathways taken by the departing oxygen atoms. With regard to the emerging opportunities of tuning the central frequencies of pump and probe pulses and of increasing the probe-pulse bandwidth, future pump-probe transient-absorption experiments are expected to provide a detailed view of the coupled nuclear and electronic dynamics during molecular dissociation.

15.
Opt Lett ; 45(18): 5266-5269, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932507

ABSTRACT

We introduce an ultra-thin attosecond optical delay line based on controlled wavefront division of a femtosecond infrared pulse after transmission through a pair of micrometer-thin glass plates with negligible dispersion effects. The time delay between the two pulses is controlled by rotating one of the glass plates from absolute zero to several optical cycles, with 2.5 as to tens of attosecond resolution with 2 as stability, as determined by interferometric self-calibration. The performance of the delay line is validated by observing attosecond-resolved oscillations in the yield of high harmonics induced by time delayed infrared pulses, in agreement with a numerical simulation for a simple model atom. This approach can be extended in the future for performing XUV-IR attosecond pump-probe experiments.

16.
Phys Rev Lett ; 125(17): 173201, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156666

ABSTRACT

Laser-induced rotational wave packets of H_{2} and D_{2} molecules were experimentally measured in real time by using two sequential 25-fs laser pulses and a reaction microscope. By measuring the time-dependent yields of the above-threshold dissociation and the enhanced ionization of the molecule, we observed a few-femtosecond time delay between the two dissociation channels for both H_{2} and D_{2}. The delay was interpreted and reproduced by a classical model that considers enhanced ionization and thus additional interaction within the laser pulse. We demonstrate that by accurately measuring the phase of the rotational wave packet in hydrogen molecules we can resolve dissociation dynamics which is occurring within a fraction of a molecular rotation. Such a rotational clock is a general concept applicable to sequential fragmentation processes in other molecules.

17.
Phys Rev Lett ; 124(19): 192502, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32469560

ABSTRACT

The excitation of the 8 eV ^{229m}Th isomer through the electronic bridge mechanism in highly charged ions is investigated theoretically. By exploiting the rich level scheme of open 4f orbitals and the robustness of highly charged ions against photoionization, a pulsed high-intensity optical laser can be used to efficiently drive the nuclear transition by coupling it to the electronic shell. We show how to implement a promising electronic bridge scheme in an electron beam ion trap starting from a metastable electronic state. This setup would avoid the need for a tunable vacuum ultraviolet laser. Based on our theoretical predictions, determining the isomer energy with an uncertainty of 10^{-5} eV could be achieved in one day of measurement time using realistic laser parameters.

18.
Phys Rev Lett ; 124(22): 225001, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567918

ABSTRACT

For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic 2p-3d transitions, 3C and 3D, in Fe XVII ions found oscillator strength ratios f(3C)/f(3D) disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of f(3C)/f(3D)=3.09(8)(6) supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers.

19.
J Phys Chem A ; 124(14): 2785-2791, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32159968

ABSTRACT

If a molecular dication is produced on a repulsive potential energy surface (PES), it normally dissociates. Before that, however, ultrafast nuclear dynamics can change the PES and significantly influence the fragmentation pathway. Here, we investigate the electron-impact-induced double ionization and subsequent fragmentation processes of the ethanol molecule using multiparticle coincident momentum spectroscopy and ab initio dynamical simulations. For the electronic ground state of the ethanol dication, we observe several fragmentation channels that cannot be reached by direct Coulomb explosion (CE) but require preceding isomerization. Our simulations show that ultrafast hydrogen or proton transfer (PT) can stabilize the repulsive PES of the dication before the direct CE and form intermediate H2 or H2O. These neutrals stay in the vicinity of the precursor, and roaming mechanisms lead to isomerization and finally PT resulting in emission of H3+ or H3O+. The present findings can help to understand the complex fragmentation dynamics of molecular cations.

20.
Nature ; 516(7531): 374-8, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25519135

ABSTRACT

The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes including chemical reactions, and hence there is much interest in developing a detailed understanding of such electron dynamics in the quantum regime. However, there is no exact solution for the quantum three-body problem, and as a result even the minimal system of two active electrons and a nucleus is analytically intractable. This makes experimental measurements of the dynamics of two bound and correlated electrons, as found in the helium atom, an attractive prospect. However, although the motion of single active electrons and holes has been observed with attosecond time resolution, comparable experiments on two-electron motion have so far remained out of reach. Here we show that a correlated two-electron wave packet can be reconstructed from a 1.2-femtosecond quantum beat among low-lying doubly excited states in helium. The beat appears in attosecond transient-absorption spectra measured with unprecedentedly high spectral resolution and in the presence of an intensity-tunable visible laser field. We tune the coupling between the two low-lying quantum states by adjusting the visible laser intensity, and use the Fano resonance as a phase-sensitive quantum interferometer to achieve coherent control of the two correlated electrons. Given the excellent agreement with large-scale quantum-mechanical calculations for the helium atom, we anticipate that multidimensional spectroscopy experiments of the type we report here will provide benchmark data for testing fundamental few-body quantum dynamics theory in more complex systems. They might also provide a route to the site-specific measurement and control of metastable electronic transition states that are at the heart of fundamental chemical reactions.

SELECTION OF CITATIONS
SEARCH DETAIL