Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem ; 42: 116223, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34091303

ABSTRACT

Libraries of DNA-Encoded small molecules created using combinatorial chemistry and synthetic oligonucleotides are being applied to drug discovery projects across the pharmaceutical industry. The majority of reported projects describe the discovery of reversible, i.e. non-covalent, target modulators. We synthesized multiple DNA-encoded chemical libraries terminated in electrophiles and then used them to discover covalent irreversible inhibitors and report the successful discovery of acrylamide- and epoxide-terminated Bruton's Tyrosine Kinase (BTK) inhibitors. We also demonstrate their selectivity, potency and covalent cysteine engagement using a range of techniques including X-ray crystallography, thermal transition shift assay, reporter displacement assay and intact protein complex mass spectrometry. The epoxide BTK inhibitors described here are the first ever reported to utilize this electrophile for this target.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , DNA/chemistry , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship
2.
Nat Commun ; 13(1): 4819, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974013

ABSTRACT

Parkinson's disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1-deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by increased Sonic Hedgehog (SHH) signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction may be required for the development of pathoetiological phenotypes observed in sPD like mitochondrial dysfunction. Inhibiting overactive SHH signaling may be a potential neuroprotective therapy for sPD.


Subject(s)
Hedgehog Proteins , Neural Stem Cells , Parkinson Disease , Animals , Cilia/metabolism , Disease Models, Animal , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Mice , Neural Stem Cells/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL