Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Proc Natl Acad Sci U S A ; 117(1): 300-307, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31852825

ABSTRACT

A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs - Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Å resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion.


Subject(s)
Phycobilins/metabolism , Phycocyanin/metabolism , Phytochrome/chemistry , Phytochrome/radiation effects , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Crystallography , Crystallography, X-Ray , Cyanobacteria/chemistry , Cyclic GMP , Light , Models, Molecular , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Photoreceptor Cells/metabolism , Phycobilins/chemistry , Phycocyanin/chemistry , Protein Conformation , Protein Domains , Thermosynechococcus , Trans-Activators/chemistry
2.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32434915

ABSTRACT

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Subject(s)
Photosynthesis , Photosystem II Protein Complex/metabolism , Hydrogen/metabolism , Magnesium/metabolism , Oxidation-Reduction , Oxygen/metabolism , Photons , Photosystem II Protein Complex/chemistry , Quinones/metabolism , Water/metabolism
3.
J Am Chem Soc ; 142(33): 14249-14266, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32683863

ABSTRACT

Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O2 activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states. Here, microcrystals of the sMMOH:MMOB complex from Methylosinus trichosporium OB3b were serially exposed to X-ray free electron laser (XFEL) pulses, where the ≤35 fs duration of exposure of an individual crystal yields diffraction data before photoreduction-induced structural changes can manifest. Merging diffraction patterns obtained from thousands of crystals generates radiation damage-free, 1.95 Å resolution crystal structures for the fully oxidized and fully reduced states of the sMMOH:MMOB complex for the first time. The results provide new insight into the manner by which the diiron cluster and the active site environment are reorganized by the regulatory protein component in order to enhance the steps of oxygen activation and methane oxidation. This study also emphasizes the value of XFEL and serial femtosecond crystallography (SFX) methods for investigating the structures of metalloenzymes with radiation sensitive metal active sites.


Subject(s)
Oxygenases/chemistry , Temperature , Methylosinus trichosporium/enzymology , Models, Molecular , Oxidation-Reduction , Oxygenases/metabolism , Solubility , X-Rays
4.
J Synchrotron Radiat ; 26(Pt 5): 1716-1724, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490163

ABSTRACT

This work has demonstrated that X-ray absorption spectroscopy (XAS), both Mn XANES and EXAFS, of solutions with millimolar concentrations of metal is possible using the femtosecond X-ray pulses from XFELs. Mn XAS data were collected using two different sample delivery methods, a Rayleigh jet and a drop-on-demand setup, with varying concentrations of Mn. Here, a new method for normalization of XAS spectra based on solvent scattering that is compatible with data collection from a highly variable pulsed source is described. The measured XANES and EXAFS spectra of such dilute solution samples are in good agreement with data collected at synchrotron sources using traditional scanning protocols. The procedures described here will enable XFEL-based XAS on dilute biological samples, especially metalloproteins, with low sample consumption. Details of the experimental setup and data analysis methods used in this XANES and EXAFS study are presented. This method will also benefit XAS performed at high-repetition-rate XFELs such as the European XFEL, LCLS-II and LCLS-II-HE.

5.
Inorg Chem ; 57(4): 1988-2001, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29384371

ABSTRACT

The kinetically robust hydride [t-HFe2(Me2pdt)(CO)2(dppv)2]+ ([t-H1]+) (Me2pdt2- = Me2C(CH2S-)2; dppv = cis-1,2-C2H2(PPh2)2) and related derivatives were prepared with 57Fe enrichment for characterization by NMR, FT-IR, and NRVS. The experimental results were rationalized using DFT molecular modeling and spectral simulations. The spectroscopic analysis was aimed at supporting assignments of Fe-H vibrational spectra as they relate to recent measurements on [FeFe]-hydrogenase enzymes. The combination of bulky Me2pdt2- and dppv ligands stabilizes the terminal hydride with respect to its isomerization to the 5-16 kcal/mol more stable bridging hydride ([µ-H1]+) with t1/2(313.3 K) = 19.3 min. In agreement with the nOe experiments, the calculations predict that one methyl group in [t-H1]+ interacts with the hydride with a computed CH···HFe distance of 1.7 Å. Although [t-H571]+ exhibits multiple NRVS features in the 720-800 cm-1 region containing the bending Fe-H modes, the deuterated [t-D571]+ sample exhibits a unique Fe-D/CO band at ∼600 cm-1. In contrast, the NRVS spectra for [µ-H571]+ exhibit weaker bands near 670-700 cm-1 produced by the Fe-H-Fe wagging modes coupled to Me2pdt2- and dppv motions.

6.
Proc Natl Acad Sci U S A ; 112(37): 11455-60, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26324916

ABSTRACT

Hydrogenases catalyze the redox interconversion of protons and H2, an important reaction for a number of metabolic processes and for solar fuel production. In FeFe hydrogenases, catalysis occurs at the H cluster, a metallocofactor comprising a [4Fe-4S]H subcluster coupled to a [2Fe]H subcluster bound by CO, CN(-), and azadithiolate ligands. The [2Fe]H subcluster is assembled by the maturases HydE, HydF, and HydG. HydG is a member of the radical S-adenosyl-L-methionine family of enzymes that transforms Fe and L-tyrosine into an [Fe(CO)2(CN)] synthon that is incorporated into the H cluster. Although it is thought that the site of synthon formation in HydG is the "dangler" Fe of a [5Fe] cluster, many mechanistic aspects of this chemistry remain unresolved including the full ligand set of the synthon, how the dangler Fe initially binds to HydG, and how the synthon is released at the end of the reaction. To address these questions, we herein show that L-cysteine (Cys) binds the auxiliary [4Fe-4S] cluster of HydG and further chelates the dangler Fe. We also demonstrate that a [4Fe-4S]aux[CN] species is generated during HydG catalysis, a process that entails the loss of Cys and the [Fe(CO)2(CN)] fragment; on this basis, we suggest that Cys likely completes the coordination sphere of the synthon. Thus, through spectroscopic analysis of HydG before and after the synthon is formed, we conclude that Cys serves as the ligand platform on which the synthon is built and plays a role in both Fe(2+) binding and synthon release.


Subject(s)
Cysteine/chemistry , Escherichia coli Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Trans-Activators/chemistry , Catalysis , Catalytic Domain , Electron Spin Resonance Spectroscopy , Hydrogenase/metabolism , Iron/metabolism , Ligands , Methionine/chemistry , Potassium Cyanide/chemistry , Protein Binding , Protons , Solar Energy , Tyrosine/chemistry
7.
Angew Chem Int Ed Engl ; 57(33): 10605-10609, 2018 08 13.
Article in English | MEDLINE | ID: mdl-29923293

ABSTRACT

A combination of nuclear resonance vibrational spectroscopy (NRVS), FTIR spectroscopy, and DFT calculations was used to observe and characterize Fe-H/D bending modes in CrHydA1 [FeFe]-hydrogenase Cys-to-Ser variant C169S. Mutagenesis of cysteine to serine at position 169 changes the functional group adjacent to the H-cluster from a -SH to -OH, thus altering the proton transfer pathway. The catalytic activity of C169S is significantly reduced compared to that of native CrHydA1, presumably owing to less efficient proton transfer to the H-cluster. This mutation enabled effective capture of a hydride/deuteride intermediate and facilitated direct detection of the Fe-H/D normal modes. We observed a significant shift to higher frequency in an Fe-H bending mode of the C169S variant, as compared to previous findings with reconstituted native and oxadithiolate (ODT)-substituted CrHydA1. On the basis of DFT calculations, we propose that this shift is caused by the stronger interaction of the -OH group of C169S with the bridgehead -NH- moiety of the active site, as compared to that of the -SH group of C169 in the native enzyme.


Subject(s)
Hydrogenase/chemistry , Catalytic Domain , Clostridium/enzymology , Density Functional Theory , Desulfovibrio desulfuricans/enzymology , Hydrogenase/genetics , Hydrogenase/metabolism , Iron/chemistry , Mutagenesis, Site-Directed , Protons , Spectroscopy, Fourier Transform Infrared
8.
J Am Chem Soc ; 139(46): 16894-16902, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29054130

ABSTRACT

[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.


Subject(s)
Hydrogen/metabolism , Hydrogenase/metabolism , Iron/metabolism , Quantum Theory , Biocatalysis , Catalytic Domain , Chlamydomonas reinhardtii/enzymology , Desulfovibrio desulfuricans/enzymology , Models, Molecular , Spectrum Analysis , Vibration
9.
J Am Chem Soc ; 139(12): 4306-4309, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28291336

ABSTRACT

[FeFe]-hydrogenases catalyze the reversible reduction of protons to molecular hydrogen with extremely high efficiency. The active site ("H-cluster") consists of a [4Fe-4S]H cluster linked through a bridging cysteine to a [2Fe]H subsite coordinated by CN- and CO ligands featuring a dithiol-amine moiety that serves as proton shuttle between the protein proton channel and the catalytic distal iron site (Fed). Although there is broad consensus that an iron-bound terminal hydride species must occur in the catalytic mechanism, such a species has never been directly observed experimentally. Here, we present FTIR and nuclear resonance vibrational spectroscopy (NRVS) experiments in conjunction with density functional theory (DFT) calculations on an [FeFe]-hydrogenase variant lacking the amine proton shuttle which is stabilizing a putative hydride state. The NRVS spectra unequivocally show the bending modes of the terminal Fe-H species fully consistent with widely accepted models of the catalytic cycle.


Subject(s)
Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Iron/chemistry , Hydrogenase/metabolism , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Water/metabolism
10.
J Am Chem Soc ; 138(4): 1146-9, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26764535

ABSTRACT

Three maturase enzymes-HydE, HydF, and HydG-synthesize and insert the organometallic component of the [FeFe]-hydrogenase active site (the H-cluster). HydG generates the first organometallic intermediates in this process, ultimately producing an [Fe(CO)2(CN)] complex. A limitation in understanding the mechanism by which this complex forms has been uncertainty regarding the precise metallocluster composition of HydG that comprises active enzyme. We herein show that the HydG auxiliary cluster must bind both l-cysteine and a dangler Fe in order to generate the [Fe(CO)2(CN)] product. These findings support a mechanistic framework in which a [(Cys)Fe(CO)2(CN)](-) species is a key intermediate in H-cluster maturation.


Subject(s)
Bacterial Proteins/chemistry , Cysteine/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Iron/chemistry , Organometallic Compounds/chemistry , S-Adenosylmethionine/chemistry , Trans-Activators/chemistry , Electron Spin Resonance Spectroscopy
11.
J Am Chem Soc ; 137(28): 8998-9005, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26091969

ABSTRACT

The preparation and spectroscopic characterization of a CO-inhibited [FeFe] hydrogenase with a selectively (57)Fe-labeled binuclear subsite is described. The precursor [(57)Fe2(adt)(CN)2(CO)4](2-) was synthesized from the (57)Fe metal, S8, CO, (NEt4)CN, NH4Cl, and CH2O. (Et4N)2[(57)Fe2(adt)(CN)2(CO)4] was then used for the maturation of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii, to yield the enzyme selectively labeled at the [2Fe]H subcluster. Complementary (57)Fe enrichment of the [4Fe-4S]H cluster was realized by reconstitution with (57)FeCl3 and Na2S. The Hox-CO state of [2(57)Fe]H and [4(57)Fe-4S]H HydA1 was characterized by Mössbauer, HYSCORE, ENDOR, and nuclear resonance vibrational spectroscopy.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Electron Spin Resonance Spectroscopy , Hydrogenase/chemistry , Iron Compounds/chemistry , Iron-Sulfur Proteins/chemistry , Spectroscopy, Mossbauer , Carbon Monoxide/metabolism , Catalytic Domain , Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/metabolism , Hydrogenase/antagonists & inhibitors , Hydrogenase/metabolism , Iron Isotopes/chemistry , Iron-Sulfur Proteins/antagonists & inhibitors , Iron-Sulfur Proteins/metabolism , Models, Molecular
12.
Nat Commun ; 12(1): 6531, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764256

ABSTRACT

Light-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.


Subject(s)
Photosystem II Protein Complex/metabolism , Hydrogen Bonding , Photosystem II Protein Complex/genetics , Protons , Water
13.
Sci Rep ; 11(1): 21787, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750381

ABSTRACT

Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.


Subject(s)
Photosystem I Protein Complex/chemistry , Vitamin K 1/chemistry , Crystallography, X-Ray , Photosynthesis , Protein Structure, Tertiary , Temperature , Thermosynechococcus
14.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: mdl-34417180

ABSTRACT

Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.


Subject(s)
Electrons , Oxidoreductases , Catalysis , Catalytic Domain , Crystallography, X-Ray , Ferric Compounds , Humans , Lasers , Oxidoreductases/chemistry , Oxygen/chemistry , Penicillins/chemistry , Penicillins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL