ABSTRACT
BACKGROUND: Antibiotic resistance of Helicobacter pylori (H. pylori) is increasing worldwide, with geographical variations, impacting the treatment outcomes. This study assessed the antibiotic resistance patterns of H. pylori in Vietnamese children. MATERIALS AND METHODS: Symptomatic children undergoing gastroduodenoscopy at two tertiary Children's Hospitals in Ho Chi Minh City were recruited. Antral and corpus biopsies were obtained and cultured separately. Susceptibility to amoxicillin (AMO), clarithromycin (CLA), metronidazole (MET), levofloxacin (LEV), and tetracycline (TET) was determined using E-test. Polymerase chain reaction was performed on another antral biopsy to detect the urease gene, cytotoxin-associated gene A (cagA), vacuolating cytotoxin A (vacA) genotypes, and 23S rRNA mutations conferring CLA resistance. RESULTS: Among 123 enrolled children, a high primary resistance rate was found for CLA (68.5%, 61/89), followed by LEV (55.1%), MET (31.5%), AMO (25.8%), and TET (1.1%). Secondary resistance rates were 82.1% (7/28), 71.4%, 53.6%, and 3.6% for CLA, LEV, MET, and TET, respectively. Multidrug resistance was frequent (67.7%), with common patterns including CLA + LEV (20.3%) and CLA + MTZ + LEV (15.2%). Heteroresistance was detected in eight children (6.5%). The A2143G mutation was detected in 97.5% (119/122) of children. 86.1% of children had positive cagA strains and 27.9% had multiple vacA genotypes. No factor was significantly associated with antibiotic resistance. CONCLUSIONS: The alarming rate of antibiotic resistance for H. pylori, especially for CLA, with emerging multi- and hetero-resistant strains, pose a major treatment challenge that precludes CLA use as empirical therapy. Biopsies from both antrum and corpus can improve H. pylori culture, allowing tailored treatment based on antimicrobial susceptibility.
Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Child , Helicobacter Infections/drug therapy , Prospective Studies , Southeast Asian People , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clarithromycin/therapeutic use , Metronidazole/pharmacology , Metronidazole/therapeutic use , Amoxicillin/therapeutic use , Levofloxacin/therapeutic use , Tetracycline/therapeutic useABSTRACT
BACKGROUND: Amoxicillin-resistant Helicobacter pylori (H. pylori) strains seem to have increased over time in Vietnam. This threatens the effectiveness of H. pylori eradication therapies with this antibiotic. This study aimed to investigate the prevalence of primary resistance of H. pylori to amoxicillin and to assess its association with pbp1A point mutations in Vietnamese patients. MATERIALS AND METHODS: Naive patients who presented with dyspepsia undergoing upper gastrointestinal endoscopy were recruited. Rapid urease tests and PCR assays were used to diagnose H. pylori infection. Amoxicillin susceptibility was examined by E-tests. Molecular detection of the mutant pbp1A gene conferring amoxicillin resistance was carried out by real-time PCR followed by direct sequencing of the PCR products. Phylogenetic analyses were performed using the Tamura-Nei genetic distance model and the neighbor-joining tree building method. RESULTS: There were 308 patients (46.1% men and 53.9% women, p = 0.190) with H. pylori infection. The mean age of the patients was 40.5 ± 11.4 years, ranging from 18 to 74 years old. The E-test was used to determine the susceptibility to amoxicillin (minimum inhibitory concentration (MIC) ≤ 0.125 µg/ml) in 101 isolates, among which the rate of primarily resistant strains to amoxicillin was 25.7%. Then, 270 sequences of pbp1A gene fragments were analysed. There were 77 amino acid substitution positions investigated, spanning amino acids 310-596, with the proportion varying from 0.4 to 100%. Seven amino acid changes were significantly different between amoxicillin-sensitive (AmoxS) and amoxicillin-resistant (AmoxR) samples, including Phe366 to Leu (p < 0.001), Ser414 to Arg (p < 0.001), Glu/Asn464-465 (p = 0.009), Val469 to Met (p = 0.021), Phe473 to Val (p < 0.001), Asp479 to Glu (p = 0.044), and Ser/Ala/Gly595-596 (p = 0.001). Phylogenetic analyses suggested that other molecular mechanisms might contribute to amoxicillin resistance in H. pylori in addition to the alterations in PBP1A. CONCLUSIONS: We reported the emergence of amoxicillin-resistant Helicobacter pylori strains in Vietnam and new mutations statistically associated with this antimicrobial resistance. Additional studies are necessary to identify the mechanisms contributing to this resistance in Vietnam.