Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Biol Chem ; 298(8): 102134, 2022 08.
Article in English | MEDLINE | ID: mdl-35709985

ABSTRACT

Extra-large stimulatory Gα (XLαs) is a large variant of G protein αs subunit (Gαs) that uses an alternative promoter and thus differs from Gαs at the first exon. XLαs activation by G protein-coupled receptors mediates cAMP generation, similarly to Gαs; however, Gαs and XLαs have been shown to have distinct cellular and physiological functions. For example, previous work suggests that XLαs can stimulate inositol phosphate production in renal proximal tubules and thereby regulate serum phosphate levels. In this study, we show that XLαs directly and specifically stimulates a specific isoform of phospholipase Cß (PLCß), PLCß4, both in transfected cells and with purified protein components. We demonstrate that neither the ability of XLαs to activate cAMP generation nor the canonical G protein switch II regions are required for PLCß stimulation. Furthermore, this activation is nucleotide independent but is inhibited by Gßγ, suggesting a mechanism of activation that relies on Gßγ subunit dissociation. Surprisingly, our results indicate that enhanced membrane targeting of XLαs relative to Gαs confers the ability to activate PLCß4. We also show that PLCß4 is required for isoproterenol-induced inositol phosphate accumulation in osteocyte-like Ocy454 cells. Taken together, we demonstrate a novel mechanism for activation of phosphoinositide turnover downstream of Gs-coupled receptors that may have a critical role in endocrine physiology.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Inositol Phosphates , Phospholipase C beta , Cell Membrane/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Inositol Phosphates/metabolism , Isoenzymes/metabolism , Isoproterenol/pharmacology , Phospholipase C beta/metabolism
2.
Annu Rev Phys Chem ; 73: 141-162, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34936809

ABSTRACT

Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters is conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined.


Subject(s)
Spectrum Analysis, Raman , Reproducibility of Results , Spectrum Analysis, Raman/methods
3.
Langmuir ; 37(16): 4891-4899, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33861606

ABSTRACT

The plasmonic properties of carboxylated gold nanostars distributed on amidoximated polyacrylonitrile (AO PAN) electrospun polymer films scale with surface-enhanced Raman scattering (SERS) intensities for coordinated uranium(VI) oxide (uranyl) species. This two-step plasmonic sensor first isolates uranyl from solution using functionalized polymers; then carboxylated gold nanostars are subsequently deposited for SERS. Spatially resolved localized surface plasmon resonance (LSPR) and SERS facilitate correlated nanostar optical density and uranyl quantification. To reduce sampling bias, gold nanostars are deposited in an inverted drop-coating geometry and measurements are conducted inside resulting nanoparticle coffee rings that form on the polymer substrates. This approach naturally preserves the plasmonic properties of gold nanostars while reducing the deposition of nanoparticle aggregates in active sensing regions, thereby maximizing both the accuracy and the precision of SERS measurements. Several advances are made. First, second-derivative analysis of LSPR spectra facilitates the quantification of local nanostar density across large regions of the sensor substrate by reducing background variations caused by the polymeric and gold materials. Second, local nanostar densities ranging from 140 to 200 pM·cm are shown to result in uranyl signals that are independent of nanostar concentration. Third, the Gibbs free energy of uranyl adsorption to carboxylated nanostars is estimated at 8.4 ± 0.2 kcal/mol. Finally, a linear dynamic range from ∼0.3 to 3.4 µg U/mg polymer is demonstrated. Signals vary by 10% or less. As such, the uniformity of the plasmonic activity of distributed gold nanostars and the employment of spatially resolved spectroscopic measurements on the composite nanomaterial sensor interface facilitate the quantitative detection of uranyl while also reducing the dependence on user expertise and the selected sampling region. These important advances are critical for the development of a user-friendly SERS-based sensor for uranyl.

4.
Mol Pharmacol ; 96(6): 826-834, 2019 12.
Article in English | MEDLINE | ID: mdl-31645376

ABSTRACT

Regulator of G protein signaling 2 (RGS2) plays a role in reducing vascular contraction and promoting relaxation due to its GTPase accelerating protein activity toward Gαq. Previously, we identified four human loss-of-function (LOF) mutations in RGS2 (Q2L, D40Y, R44H, and R188H). This study aimed to investigate whether those RGS2 LOF mutations disrupt the ability of RGS2 to regulate vascular reactivity. Isolated mesenteric arteries (MAs) from RGS2-/- mice showed an elevated contractile response to 5 nM angiotensin II and a loss of acetylcholine (ACh)-mediated vasodilation. Reintroduction of a wild-type (WT) RGS2-GFP plasmid into RGS2-/- MAs suppressed the vasoconstrictor response to angiotensin II. RGS2 LOF mutants failed to suppress the angiotensin II constriction response compared with RGS2 WT. In contrast, ACh-mediated vasoconstriction was restored by expression of RGS2 WT, D40Y, and R44H but not by RGS2 Q2L or R188H. Phosphorylation of RGS2 D40Y and R44H by protein kinase G (PKG) may explain their maintained function to support relaxation in MAs. This is supported by phosphomimetic mutants and suppression of vasorelaxation mediated by RGS2 D40Y by a PKG inhibitor. These results demonstrate that RGS2 attenuates vasoconstriction in MAs and that RGS2 LOF mutations cannot carry out this effect. Among them, the Q2L and R188H mutants supported less relaxation to ACh, whereas relaxation mediated by the D40Y and R44H mutant proteins was equal to that with WT protein. Phosphorylation of RGS2 by PKG appears to contribute to this vasorelaxation. These results provide insights for precision medicine targeting the rare individuals carrying these RGS2 mutations. SIGNIFICANCE STATEMENT: Regulator of G protein signaling 2 (RGS2) has been implicated in the control of blood pressure; rare mutations in the RGS2 gene have been identified in large-scale human gene sequencing studies. Four human mutations in RGS2 that cause loss of function (LOF) in cell-based assays were examined in isolated mouse arteries for effects on both vasoconstriction and vasodilation. All mutants showed the expected LOF effects in suppressing vasoconstriction. Surprisingly, the D40Y and R44H mutant RGS2 showed normal control of vasodilation. We propose that this is due to rescue of the mislocalization phenotype of these two mutants by nitric oxide-mediated/protein kinase G-dependent phosphorylation. These mechanisms may guide drug discovery or drug repurposing efforts for hypertension by enhancing RGS2 function.


Subject(s)
Loss of Function Mutation/physiology , RGS Proteins/genetics , RGS Proteins/metabolism , Vasoconstriction/physiology , Vasoconstrictor Agents/pharmacology , Animals , Aorta/drug effects , Aorta/physiology , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Loss of Function Mutation/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Structure, Secondary , RGS Proteins/chemistry , Vasoconstriction/drug effects
5.
Anal Chem ; 90(11): 6766-6772, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29741873

ABSTRACT

Reproducible detection of uranyl, an important biological and environmental contaminant, from complex matrixes by surface-enhanced Raman scattering (SERS) is successfully achieved using amidoximated-polyacrylonitrile (AO-PAN) mats and carboxylated gold (Au) nanostars. SERS detection of small molecules from a sample mixture is traditionally limited by nonspecific adsorption of nontarget species to the metal nanostructures and subsequent variations in both the vibrational frequencies and intensities. Herein, this challenge is overcome using AO-PAN mats to extract uranyl from matrixes ranging in complexity including HEPES buffer, Ca(NO3)2 and NaHCO3 solutions, and synthetic urine. Subsequently, Au nanostars functionalized with carboxyl-terminated alkanethiols are used to enhance the uranyl signal. The detected SERS signals scale with uranyl uptake as confirmed using liquid scintillation counting. SERS vibrational frequencies of uranyl on both hydrated and lyophilized polymer mats are largely independent of sample matrix, indicating less complexity in the uranyl species bound to the surface of the mats vs in solution. These results suggest that matrix effects, which commonly limit the use of SERS for complex sample analysis, are minimized for uranyl detection. The presented synergistic approach for isolating uranyl from complex sample matrixes and enhancing the signal using SERS is promising for real-world sample detection and eliminates the need of radioactive tracers and extensive sample pretreatment steps.


Subject(s)
Acrylic Resins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Uranium/analysis , Spectrum Analysis, Raman , Surface Properties
6.
Anal Bioanal Chem ; 410(24): 6113-6123, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29748758

ABSTRACT

Unwanted nanoparticle aggregation and/or agglomeration may occur when anisotropic nanoparticles are dispersed in various solvents and matrices. While extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been successfully applied to predict nanoparticle stability in solution, this model fails to accurately predict the physical stability of anisotropic nanostructures; thus limiting its applicability in practice. Herein, DLVO theory was used to accurately predict gold nanostar stability in solution by investigating how the choice of the nanostar dimension considered in calculations influences the calculated attractive and repulsive interactions between nanostructures. The use of the average radius of curvature of the nanostar tips instead of the average radius as the nanostar dimension of interest increases the accuracy with which experimentally observed nanoparticle behavior can be modeled theoretically. This prediction was validated by measuring time-dependent localized surface plasmon resonance (LSPR) spectra of gold nanostars suspended in solutions with different ionic strengths. Minimum energy barriers calculated from collision theory as a function of nanoparticle concentration were utilized to make kinetic predictions. All in all, these studies suggest that choosing the appropriate gold nanostar dimension is crucial to fully understanding and accurately predicting the stability of anisotropic nanostructures such as gold nanostars; i.e., whether the nanostructures remain stable and can be used reproducibly, or whether they aggregate and exhibit inconsistent results. Thus, the present work provides a deeper understanding of internanoparticle interactions in solution and is expected to lead to more consistent and efficient analytical and bioanalytical applications of these important materials in the future. Graphical abstract ᅟ.

7.
Mol Pharmacol ; 92(4): 451-458, 2017 10.
Article in English | MEDLINE | ID: mdl-28784619

ABSTRACT

Regulator of G protein signaling 2 (RGS2) plays a significant role in alleviating vascular contraction and promoting vascular relaxation due to its GTPase accelerating protein activity toward Gαq. Mice lacking RGS2 display a hypertensive phenotype, and several RGS2 missense mutations have been found predominantly in hypertensive human subjects. However, the mechanisms whereby these mutations could impact blood pressure is unknown. Here, we selected 16 rare, missense mutations in RGS2 identified in various human exome sequencing projects and evaluated their ability to inhibit intracellular calcium release mediated by angiotensin II receptor type 1 (AT1R). Four of them had reduced function and were further investigated to elucidate underlying mechanisms. Low protein expression, protein mislocalization, and reduced G protein binding were identified as likely mechanisms of the malfunctioning mutants. The Q2L mutant had 50% lower RGS2 than wild-type (WT) protein detected by Western blot. Confocal microscopy demonstrated that R44H and D40Y had impaired plasma membrane targeting; only 46% and 35% of those proteins translocated to the plasma membrane when coexpressed with Gαq Q209L compared with 67% for WT RGS2. The R188H mutant had a significant reduction in Gαq binding affinity (10-fold increase in Ki compared with WT RGS2 in a flow cytometry competition binding assay). This study provides functional data for 16 human RGS2 missense variants on their effects on AT1R-mediated calcium mobilization and provides molecular understanding of those variants with functional loss in vitro. These molecular behaviors can provide insight to inform antihypertensive therapeutics in individuals with variants having reduced function.


Subject(s)
Mutation, Missense/physiology , RGS Proteins/chemistry , RGS Proteins/physiology , Angiotensin II/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Protein Structure, Secondary , RGS Proteins/agonists
8.
J Extracell Vesicles ; 13(5): e12454, 2024 May.
Article in English | MEDLINE | ID: mdl-38760878

ABSTRACT

Extracellular vesicles (EVs) are emerging as a promising drug delivery vehicle as they are biocompatible and capable of targeted delivery. However, clinical translation of EVs remains challenging due to the lack of standardized and scalable manufacturing protocols to consistently isolate small EVs (sEVs) with both high yield and high purity. The heterogenous nature of sEVs leading to unknown composition of biocargos causes further pushback due to safety concerns. In order to address these issues, we developed a robust quality-controlled multi-stage process to produce and isolate sEVs from human embryonic kidney HEK293F cells. We then compared different 2-step and 3-step workflows for eliminating protein impurities and cell-free nucleic acids to meet acceptable limits of regulatory authorities. Our results showed that sEV production was maximized when HEK293F cells were grown at high-density stationary phase in semi-continuous culture. The novel 3-step workflow combining tangential flow filtration, sucrose-cushion ultracentrifugation and bind-elute size-exclusion chromatography outperformed other methods in sEV purity while still preserved high yield and particle integrity. The purified HEK293F-derived sEVs were thoroughly characterized for identity including sub-population analysis, content profiling including proteomics and miRNA sequencing, and demonstrated excellent preclinical safety profile in both in-vitro and in-vivo testing. Our rigorous enrichment workflow and comprehensive characterization will help advance the development of EVs, particularly HEK293F-derived sEVs, to be safe and reliable drug carriers for therapeutic applications.


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , HEK293 Cells , Proteomics/methods , Workflow , Ultracentrifugation/methods , MicroRNAs/metabolism
9.
J Phys Chem B ; 127(11): 2457-2465, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36912891

ABSTRACT

Obesity is a classified epidemic, increasing the risk of secondary diseases such as diabetes, inflammation, cardiovascular disease, and cancer. The pleiotropic hormone leptin is the proposed link for the gut-brain axis controlling nutritional status and energy expenditure. Research into leptin signaling provides great promise toward discovering therapeutics for obesity and its related diseases targeting leptin and its cognate leptin receptor (LEP-R). The molecular basis underlying the human leptin receptor complex assembly remains obscure, due to the lack of structural information regarding the biologically active complex. In this work, we investigate the proposed receptor binding sites in human leptin utilizing designed antagonist proteins combined with AlphaFold predictions. Our results show that binding site I has a more intricate role in the active signaling complex than previously described. We hypothesize that the hydrophobic patch in this region engages a third receptor forming a higher-order complex, or a new LEP-R binding site inducing allosteric rearrangement.


Subject(s)
Leptin , Receptors, Leptin , Humans , Leptin/chemistry , Receptors, Leptin/metabolism , Obesity/metabolism , Signal Transduction , Protein Binding
10.
J Raman Spectrosc ; 52(2): 497-505, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34177076

ABSTRACT

The impact of tunable morphologies and plasmonic properties of gold nanostars are evaluated for the surface enhanced Raman scattering (SERS) detection of uranyl. To do so, gold nanostars are synthesized with varying concentrations of the Good's buffer reagent, 2-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid (EPPS). EPPS plays three roles including as a reducing agent for nanostar nucleation and growth, as a nanostar-stabilizing agent for solution phase stability, and as a coordinating ligand for the capture of uranyl. The resulting nanostructures exhibit localized surface plasmon resonance (LSPR) spectra that contain two visible and one near-infrared plasmonic modes. All three optical features arise from synergistic coupling between the nanostar core and branches. The tunability of these optical resonances are correlated with nanostar morphology through careful transmission electron microscopy (TEM) analysis. As the EPPS concentration used during synthesis increases, both the length and aspect ratio of the branches increase. This causes the two lower energy extinction features to grow in magnitude and become ideal for the SERS detection of uranyl. Finally, uranyl binds to the gold nanostar surface directly and via sulfonate coordination. Changes in the uranyl signal are directly correlated to the plasmonic properties associated with the nanostar branches. Overall, this work highlights the synergistic importance of nanostar morphology and plasmonic properties for the SERS detection of small molecules.

11.
Sci Signal ; 14(713): eabj4243, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34905385

ABSTRACT

Activating mutations in Gαq/11 proteins are frequent in uveal melanoma, the most common eye cancer arising from the uveal tract. A small proportion of uveal melanomas have a D630Y mutation in phospholipase C ß4 (PLCß4), an effector of Gαq/11. Here, we found that the D630Y mutation in PLCß4 results in a high level of constitutive PLCß4 activity. Mutations at the corresponding position in other PLC isoforms also resulted in constitutive activity, revealing an unrecognized mechanism underlying PLC activation. In cultured human uveal melanoma cell lines, inhibition of PLC suppressed proliferation in Gαq/11-dependent cells. Furthermore, we found that PLCß4(D630Y) mediated proliferation in cutaneous melanocytes and the growth of melanomas in mice. These results are consistent with PLCß4(D630Y) driving oncogenic signaling downstream of Gαq/11.


Subject(s)
Phospholipase C beta/genetics , Uveal Neoplasms , Cell Proliferation , Cell Transformation, Neoplastic , Humans , Melanocytes , Melanoma , Mutation , Uveal Neoplasms/genetics
12.
Environ Microbiol ; 12(3): 758-73, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20002138

ABSTRACT

Lactobacillus plantarum is a ubiquitous microorganism that is able to colonize several ecological niches, including vegetables, meat, dairy substrates and the gastro-intestinal tract. An extensive phenotypic and genomic diversity analysis was conducted to elucidate the molecular basis of the high flexibility and versatility of this species. First, 185 isolates from diverse environments were phenotypically characterized by evaluating their fermentation and growth characteristics. Strains clustered largely together within their particular food niche, but human fecal isolates were scattered throughout the food clusters, suggesting that they originate from the food eaten by the individuals. Based on distinct phenotypic profiles, 24 strains were selected and, together with a further 18 strains from an earlier low-resolution study, their genomic diversity was evaluated by comparative genome hybridization against the reference genome of L. plantarum WCFS1. Over 2000 genes were identified that constitute the core genome of the L. plantarum species, including 121 unique L. plantarum-marker genes that have not been found in other lactic acid bacteria. Over 50 genes unique for the reference strain WCFS1 were identified that were absent in the other L. plantarum strains. Strains of the L. plantarum subspecies argentoratensis were found to lack a common set of 24 genes, organized in seven gene clusters/operons, supporting their classification as a separate subspecies. The results provide a detailed view on phenotypic and genomic diversity of L. plantarum and lead to a better comprehension of niche adaptation and functionality of the organism.


Subject(s)
Biodiversity , Environment , Genome, Bacterial , Lactobacillus plantarum , Phenotype , Animals , Cluster Analysis , DNA, Bacterial/genetics , Humans , Lactobacillus plantarum/genetics , Lactobacillus plantarum/isolation & purification , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics
13.
Nanoscale ; 12(46): 23700-23708, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33226397

ABSTRACT

Silica membrane stabilized gold coated silver (Ag@Au) (i.e., internally etched silica coated Ag@Au (IE Ag@Au@SiO2)) nanoparticles promote surface-enhanced Raman scattering (SERS) activity and detection of uranium(vi) oxide (uranyl) under harsh solution phase conditions including at pH 3-7, with ionic strengths up to 150 mM, and temperatures up to 37 °C for at least 10 hours. These materials overcome traditional solution-phase plasmonic nanomaterial limitations including signal variability and/or degradation arising from nanoparticle aggregation, dissolution, and/or surface chemistry changes. Quantitative uranyl detection occurs via coordination to 3-mercaptopropionate (MPA), a result confirmed through changes in correlated SERS intensities for uranyl and COOH/COO- vibrational modes. Quantification is demonstrated down to 110 nM, a concentration below toxic levels. As pH varies from 3 to 7, the plasmonic properties of the nanoparticles are unchanged, and the uranyl signal depends on both the protonation state of MPA as well as uranyl solubility. High ionic strengths (up to 150 mM) and incubation at 37 °C for at least 10 hours do not impact the SERS activity of uranyl even though slight silica dissolution is observed during thermal treatment. All in all, microporous silica membranes effectively protect the nanoparticles against variations in solution conditions thus illustrating robust tunability for uranyl detection using SERS.

14.
J Phys Chem C Nanomater Interfaces ; 124(26): 14287-14296, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32944118

ABSTRACT

Aggregates or clusters of primary metal nanoparticles in solution are one of the most widely used platforms for surface-enhanced Raman scattering (SERS) measurements because these nanostructures induce strong electric fields or hot spots between nanoparticles and as a result, SERS signals. While SERS signals are observed to vary with time, the impact of cluster formation mechanisms on SERS activity has been less studied. Herein, variations in time-dependent SERS signals from gold nanosphere clusters and aggregates are considered both experimentally and theoretically. An excess of the Raman reporter molecule, 2-naphthalenethiol, is added to induce rapid monolayer formation on the nanoparticles. In this diffusion-limited regime, clusters form as loosely packed fractals and the ligands help control nanoparticle separation distances once clusters form. By systematically varying gold nanosphere concentration and diameter, the reaction kinetics and dynamics associated with cluster formation can be studied. Dynamic light scattering (DLS), localized surface plasmon resonance (LSPR) spectroscopy, and SERS reveal that aggregates form reproducibly in the diffusion-limited regime and follow a self-limiting cluster size model. The rate of cluster formation during this same reaction window is explained using interaction pair potential calculations and collision theory. Diffusion-limited reaction conditions are limited by sedimentation only if sedimentation velocities exceed diffusion velocities of the clusters or via plasmon damping through radiation or scattering losses. These radiative loses are only significant when the extinction magnitude near the excitation wavelength exceeds 1.5. By evaluating these responses as a function of both nanosphere radius and concentration, time-dependent SERS signals are revealed to follow collision theory and be predictable when both nanosphere concentration and size are considered.

15.
J Phys Chem C Nanomater Interfaces ; 123(27): 16495-16507, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31844485

ABSTRACT

The term "nanoparticle stability" is widely used to describe the preservation of a particular nanostructure property ranging from aggregation, composition, crystallinity, shape, size, and surface chemistry. As a result, this catch-all term has various meanings, which depend on the specific nanoparticle property of interest and/or application. In this feature article, we provide an answer to the question, "What does nanoparticle stability mean?". Broadly speaking, the definition of nanoparticle stability depends on the targeted size dependent property that is exploited and can only exist for a finite period of time given all nanostructures are inherently thermodynamically and energetically unfavorable relative to bulk states. To answer this question specifically, however, the relationship between nanoparticle stability and the physical/chemical properties of metal/metal oxide nanoparticles are discussed. Specific definitions are explored in terms of aggregation state, core composition, shape, size, and surface chemistry. Next, mechanisms of promoting nanoparticle stability are defined and related to these same nanoparticle properties. Metrics involving both kinetics and thermodynamics are considered. Methods that provide quantitative metrics for measuring and modeling nanoparticle stability in terms of core composition, shape, size, and surface chemistry are outlined. The stability of solution-phase nanoparticles are also impacted by aggregation state. Thus, collision and DLVO theories are discussed. Finally, challenges and opportunities in understanding what nanoparticle stability means are addressed to facilitate further studies with this important class of materials.

SELECTION OF CITATIONS
SEARCH DETAIL