Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947972

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor five-year survival rate of less than 10%. Immune suppression along with chemoresistance are obstacles for PDAC therapeutic treatment. Innate immune cells, such as tumor-associated macrophages, are recruited to the inflammatory environment of PDAC and adversely suppress cytotoxic T lymphocytes. KRAS and MYC are important oncogenes associated with immune suppression and pose a challenge to successful therapies. Here, we targeted KRAS, through inhibition of downstream c-RAF with GW5074, and MYC expression via difluoromethylornithine (DFMO). DFMO alone and with GW5074 reduced in vitro PDAC cell viability. Both DFMO and GW5074 showed efficacy in reducing in vivo PDAC growth in an immunocompromised model. Results in immunocompetent syngeneic tumor-bearing mice showed that DFMO and combination treatment markedly decreased tumor size, but only DFMO increased survival in mice. To further investigate, immunohistochemical staining showed DFMO diminished MYC expression and increased tumor infiltration of macrophages, CD86+ cells, CD4+ and CD8+ T lymphocytes. GW5074 was not as effective in modulating the tumor infiltration of total CD3+ lymphocytes or tumor progression and maintained MYC expression. Collectively, this study highlights that in contrast to GW5074, the inhibition of MYC through DFMO may be an effective treatment modality to modulate PDAC immunosuppression.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Eflornithine/administration & dosage , Indoles/administration & dosage , Pancreatic Neoplasms/drug therapy , Phenols/administration & dosage , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Down-Regulation , Drug Synergism , Eflornithine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunocompetence/drug effects , Immunocompromised Host/drug effects , Indoles/pharmacology , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Phenols/pharmacology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Treatment Outcome , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
2.
Amino Acids ; 52(8): 1169-1180, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32816168

ABSTRACT

Polyamines (PAs), such as spermidine (SPD) and spermine (SPM), are essential to promote cell growth, survival, proliferation, and longevity. In the adult central nervous system (CNS), SPD and SPM are accumulated predominantly in healthy adult glial cells where PA synthesis is not present. To date, the accumulation and biosynthesis of PAs in developing astrocytes are not well understood. The purpose of the present study was to determine the contribution of uptake and/or synthesis of PAs using proliferation of neonatal astrocytes as an endpoint. We inhibited synthesis of PAs using α-difluoromethylornithine (DFMO; an inhibitor of the PA biosynthetic enzyme ornithine decarboxylase (ODC)) and inhibited uptake of PAs using trimer44NMe (PTI; a novel polyamine transport inhibitor). DFMO, but not PTI alone, blocked proliferation, suggesting that PA biosynthesis was present. Furthermore, exogenous administration of SPD rescued cell proliferation when PA synthesis was blocked by DFMO. When both synthesis and uptake of PAs were inhibited (DFMO + PTI), exogenous SPD no longer supported proliferation. These data indicate that neonatal astrocytes synthesize sufficient quantities of PAs de novo to support cell proliferation, but are also able to import exogenous PAs. This suggests that the PA uptake mechanism is present in both neonates as well as in adults and can support cell proliferation in neonatal astrocytes when ODC is blocked.


Subject(s)
Astrocytes/metabolism , Polyamines/metabolism , Animals , Cell Proliferation/drug effects , Cells, Cultured , Eflornithine , Polyamines/antagonists & inhibitors , Protein Transport , Rats , Rats, Sprague-Dawley , Spermidine/metabolism , Spermine/metabolism
3.
Int J Cancer ; 142(10): 1968-1976, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29134652

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest major cancers, with a five year survival rate of less than 8%. With current therapies only giving rise to modest life extension, new approaches are desperately needed. Even though targeting polyamine metabolism is a proven anticancer strategy, there are no reports, which thoroughly survey the literature describing the role of polyamine biosynthesis and transport in PDAC. This review seeks to fill this void by describing what is currently known about polyamine metabolism in PDAC and identifies new targets and opportunities to treat this disease. Due to the pleiotropic effects that polyamines play in cells, this review covers diverse areas ranging from polyamine metabolism (biosynthesis, catabolism and transport), as well as the potential role of polyamines in desmoplasia, autophagy and immune privilege. Understanding these diverse roles provides the opportunity to design new therapies to treat this deadly cancer via polyamine depletion.


Subject(s)
Biogenic Polyamines/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Animals , Humans , Spermine/metabolism
4.
Mol Pharm ; 15(2): 369-376, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29299930

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is highly chemo-resistant and has an extremely poor patient prognosis, with a survival rate at five years of <8%. There remains an urgent need for innovative treatments. Targeting polyamine biosynthesis through inhibition of ornithine decarboxylase with difluoromethylornithine (DFMO) has had mixed clinical success due to tumor escape via an undefined transport system, which imports exogenous polyamines and sustains intracellular polyamine pools. Here, we tested DFMO in combination with a polyamine transport inhibitor (PTI), Trimer44NMe, against Gemcitabine-resistant PDAC cells. DFMO alone and with Trimer44NMe significantly reduced PDAC cell viability by inducing apoptosis or diminishing proliferation. DFMO alone and with Trimer44NMe also inhibited in vivo orthotopic PDAC growth and resulted in decreased c-Myc expression, a readout of polyamine pathway dysfunction. Moreover, dual inhibition significantly prolonged survival of tumor-bearing mice. Collectively, these studies demonstrate that targeting polyamine biosynthesis and import pathways in PDAC can lead to increased survival in pancreatic cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Deoxycytidine/analogs & derivatives , Eflornithine/pharmacology , Ornithine Decarboxylase Inhibitors/pharmacology , Pancreatic Neoplasms/drug therapy , Polyamines/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Biological Transport/drug effects , Biosynthetic Pathways/drug effects , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Survival/drug effects , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm , Eflornithine/therapeutic use , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase Inhibitors/therapeutic use , Pancreas , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Survival Analysis , Treatment Outcome , Xenograft Model Antitumor Assays , Gemcitabine
5.
Chembiochem ; 18(3): 276-283, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28098416

ABSTRACT

Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram-negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU-N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer-membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de-energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Heterocyclic Compounds, 1-Ring/pharmacology , Polyamines/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Enterobacter aerogenes/drug effects , Gram-Positive Bacteria/drug effects , Heterocyclic Compounds, 1-Ring/chemistry , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Polyamines/chemistry
6.
J Cell Physiol ; 231(6): 1334-42, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26529275

ABSTRACT

Increased vascular smooth muscle cell (VSMC) proliferation is a factor in atherosclerosis and injury-induced arterial (re) stenosis. Inhibition of polyamine synthesis by α-difluoro-methylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, attenuates VSMC proliferation with high sensitivity and specificity. However, cells can escape polyamine synthesis blockade by importing polyamines from the environment. To address this issue, polyamine transport inhibitors (PTIs) have been developed. We investigated the effects of the novel trimer44NMe (PTI-1) alone and in combination with DFMO on VSMC polyamine uptake, proliferation and phenotype regulation. PTI-1 efficiently inhibited polyamine uptake in primary mouse aortic and human coronary VSMCs in the absence as well as in the presence of DFMO. Interestingly, culture with DFMO for 2 days substantially (>95%) reduced putrescine (Put) and spermidine (Spd) contents without any effect on proliferation. Culture with PTI-1 alone had no effect on either polyamine levels or proliferation rate, but the combination of both treatments reduced Put and Spd levels below the detection limit and inhibited proliferation. Treatment with DFMO for a longer time period (4 days) reduced Put and Spd below their detection limits and reduced proliferation, showing that only a small pool of polyamines is needed to sustain VSMC proliferation. Inhibited proliferation by polyamine depletion was associated with maintained expression of contractile smooth marker genes. In cultured intact mouse aorta, PTI-1 potentiated the DFMO-induced inhibition of cell proliferation. The combination of endogenous polyamine synthesis inhibition with uptake blockade is thus a viable approach for targeting unwanted vascular cell proliferation in vivo, including vascular restenosis.


Subject(s)
Biogenic Polyamines/biosynthesis , Cell Proliferation/drug effects , Eflornithine/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Ornithine Decarboxylase Inhibitors/pharmacology , Polyamines/pharmacology , Vasoconstriction/drug effects , Animals , Biological Transport , Caveolin 1/deficiency , Caveolin 1/genetics , Cells, Cultured , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation , Humans , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Putrescine/metabolism , Spermidine/metabolism , Time Factors , Tissue Culture Techniques
7.
Bioorg Med Chem ; 24(12): 2768-76, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27161874

ABSTRACT

A series of chalcone, flavone, coumaranone and other flavonoid compounds were screened for their anti HIV-1 activity in two cell culture models using TZM-bl and PM1 cells. Within the systems evaluated, the most promising compounds contained either an α- or ß-hydroxy-carbonyl motif within their structure (e.g., 8 and 9). Efficacious substituents were identified and used to design new HIV inhibitors with increased potency and lower cytotoxicity. Of the scaffolds evaluated, specific chalcones were found to provide the best balance between anti-HIV potency and low host cell toxicity. Chalcone 8l was shown to inhibit different clinical isolates of HIV in a dose-dependent manner (e.g., IC50 typically⩽5µM). Inhibition of HIV infection experiments using TZM-bl cells demonstrated that chalcone 8l and flavonol 9c had IC50 values of 4.7µM and 10.4µM, respectively. These insights were used to design new chalcones 8o and 8p. Rewardingly, chalcones 8o and 8p (at 10µM) each gave >92% inhibition of viral propagation without impacting PM1 host cell viability. Inhibition of viral propagation significantly increased (60-90%) when PM1 cells were pre-incubated with chalcone 8o, but not with the related flavonol 9c. These results suggested that chalcone 8o may be of value as both a HIV prophylactic and therapy. In summary, O-benzyl-substituted chalcones were identified as promising anti-HIV agents for future investigation.


Subject(s)
Anti-HIV Agents/pharmacology , Benzofurans/pharmacology , Chalcones/pharmacology , Flavonoids/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Line , Chalcones/chemical synthesis , Chalcones/chemistry , Flavonoids/chemical synthesis , Flavonoids/chemistry , Humans , Structure-Activity Relationship
8.
J Biol Chem ; 288(22): 15668-76, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23572531

ABSTRACT

Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437-446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Proteus Infections/metabolism , Proteus mirabilis/metabolism , Putrescine/metabolism , Urothelium/microbiology , Bacterial Proteins/genetics , Carrier Proteins/genetics , Cell Line , Humans , Mutation , Proteus Infections/genetics , Proteus Infections/microbiology , Proteus mirabilis/genetics , Proteus mirabilis/pathogenicity , Urothelium/pathology
9.
Biomolecules ; 14(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38397415

ABSTRACT

Streptococcus pneumoniae (Spn), a Gram-positive bacterium, poses a significant threat to human health, causing mild respiratory infections to severe invasive conditions. Despite the availability of vaccines, challenges persist due to serotype replacement and antibiotic resistance, emphasizing the need for alternative therapeutic strategies. This study explores the intriguing role of polyamines, ubiquitous, small organic cations, in modulating virulence factors, especially the capsule, a crucial determinant of Spn's pathogenicity. Using chemical inhibitors, difluoromethylornithine (DFMO) and AMXT 1501, this research unveils distinct regulatory effects on the gene expression of the Spn D39 serotype in response to altered polyamine homeostasis. DFMO inhibits polyamine biosynthesis, disrupting pathways associated with glucose import and the interconversion of sugars. In contrast, AMXT 1501, targeting polyamine transport, enhances the expression of polyamine and glucose biosynthesis genes, presenting a novel avenue for regulating the capsule independent of glucose availability. Despite ample glucose availability, AMXT 1501 treatment downregulates the glycolytic pathway, fatty acid synthesis, and ATP synthase, crucial for energy production, while upregulating two-component systems responsible for stress management. This suggests a potential shutdown of energy production and capsule biosynthesis, redirecting resources towards stress management. Following DFMO and AMXT 1501 treatments, countermeasures, such as upregulation of stress response genes and ribosomal protein, were observed but appear to be insufficient to overcome the deleterious effects on capsule production. This study highlights the complexity of polyamine-mediated regulation in S. pneumoniae, particularly capsule biosynthesis. Our findings offer valuable insights into potential therapeutic targets for modulating capsules in a polyamine-dependent manner, a promising avenue for intervention against S. pneumoniae infections.


Subject(s)
Eflornithine , Streptococcus pneumoniae , Humans , Eflornithine/pharmacology , Streptococcus pneumoniae/genetics , Polyamines/metabolism , Glucose/metabolism , Gene Expression
10.
Biomolecules ; 14(3)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38540746

ABSTRACT

Amino acid restriction induces cellular stress and cells often respond via the induction of autophagy. Autophagy or 'self-eating' enables the recycling of proteins and provides the essential amino acids needed for cell survival. Of the naturally occurring amino acids, methionine restriction has pleiotropic effects on cells because methionine also contributes to the intracellular methyl pools required for epigenetic controls as well as polyamine biosynthesis. In this report, we describe the chemical synthesis of four diastereomers of a methionine depletion agent and demonstrate how controlled methionine efflux from cells significantly reduces intracellular methionine, S-adenosylmethionine (SAM), S-adenosyl homocysteine (SAH), and polyamine levels. We also demonstrate that human pancreatic cancer cells respond via a lipid signaling pathway to induce autophagy. The methionine depletion agent causes the large amino acid transporter 1 (LAT1) to preferentially work in reverse and export the cell's methionine (and leucine) stores. The four diastereomers of the lead methionine/leucine depletion agent were synthesized and evaluated for their ability to (a) efflux 3H-leucine from cells, (b) dock to LAT1 in silico, (c) modulate intracellular SAM, SAH, and phosphatidylethanolamine (PE) pools, and (d) induce the formation of the autophagy-associated LC3-II marker. The ability to modulate the intracellular concentration of methionine regardless of exogenous methionine supply provides new molecular tools to better understand cancer response pathways. This information can then be used to design improved therapeutics that target downstream methionine-dependent processes like polyamines.


Subject(s)
Amino Acids , Methionine , Humans , Leucine/metabolism , Methionine/metabolism , S-Adenosylmethionine/metabolism , Polyamines/metabolism , Racemethionine
11.
Antimicrob Agents Chemother ; 57(6): 2874-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23545535

ABSTRACT

Anthracene-polyamine conjugates inhibit the in vitro proliferation of the intraerythrocytic human malaria parasite Plasmodium falciparum, with 50% inhibitory concentrations (IC50s) in the nM to µM range. The compounds are taken up into the intraerythrocytic parasite, where they arrest the parasite cell cycle. Both the anthracene and polyamine components of the conjugates play a role in their antiplasmodial effect.


Subject(s)
Anthracenes/pharmacology , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Polyamines/pharmacology , Animals , Anthracenes/chemistry , Antimalarials/chemistry , Antimalarials/metabolism , CHO Cells , Cell Line, Tumor , Cricetulus , Erythrocytes/parasitology , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/parasitology , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Polyamines/chemistry , Polyamines/metabolism
12.
Amino Acids ; 44(4): 1193-203, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23292094

ABSTRACT

One of the major problems in cancer therapy is the lack of specificity of chemotherapeutic agents towards cancer cells, resulting in adverse side effects. One means to counter this is to selectively deliver the drug to the cancer cell. Cancer cells accumulate increased concentrations of polyamines compared to normal cells, mainly through an increased uptake of preformed polyamines via the polyamine transport system (PTS). Furthermore, the non-stringent structural requirements of the PTS enable the transport of a range of polyamine-based molecules. Thus, the PTS can be used to transport compounds linked to polyamines selectively to cancer cells. In our laboratory, polyamine-anthracene conjugates have shown potent anti-tumour activity towards HL-60 cells. The aim of this study was to determine the cytotoxicity of Ant-4,4, a homospermidine-anthracene conjugate, and assess the long-term effects by determining whether cancer cells were able to recover from treatment. During exposure, Ant-4,4 was an effective growth-inhibitory agent in HL-60 cells decreasing viable cell number, protein and polyamine content. Evidence indicates concomitant cell-cycle arrest and increased apoptosis. Once the drug was removed, HL-60 cells recovered gradually over time. Increasing cell number, protein content and polyamine content, as well as diminished effects on cell-cycle and apoptotic stimuli were observed over time. These data suggest that, despite being an effective way of delivering anthracene, these polyamine conjugates do not exert long-lasting effects on HL-60 cells.


Subject(s)
Anthracenes/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Leukemia, Myeloid/physiopathology , Polyamines/metabolism , Anthracenes/chemistry , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Drug Delivery Systems , HL-60 Cells , Humans , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/metabolism , Polyamines/chemistry , Polyamines/pharmacology
13.
Biomedicines ; 11(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37893077

ABSTRACT

GCN2 is one of the main sensors of amino acid starvation stress, and its activation in the stressful tumor microenvironment plays a crucial role in tumor survival and progression. We hypothesized that elevated polyamine biosynthesis and subsequent depletion of precursor arginine activates GCN2, thus rewiring metabolism to support tumor cell survival and drive myeloid immunosuppressive function. We sought to determine if the anti-tumor efficacy of a polyamine blocking therapy (PBT) may be mediated by its effect on GCN2. Unlike wild-type mice, PBT treatment in GCN2 knockout mice bearing syngeneic B16.F10 or EG7 tumors resulted in no tumor growth inhibition and no changes in the profile of infiltrating tumor immune cells. Studies with murine bone marrow cell cultures showed that increased polyamine metabolism and subsequent arginine depletion and GCN2 activation played an essential role in the generation and cytoprotective autophagy of myeloid derived suppressor cells (MDSCs) as well as the M2 polarization and survival of macrophages, all of which were inhibited by PBT. In all, our data suggest that polyamine-dependent GCN2 signaling in stromal cells promotes tumor growth and the development of the immunosuppressive tumor microenvironment, and that the PBT anti-tumor effect is mediated, at least in part, by targeting GCN2.

14.
Front Plant Sci ; 14: 1194737, 2023.
Article in English | MEDLINE | ID: mdl-37332717

ABSTRACT

Nitrogen (N) is one of the most expensive nutrients to supply, therefore, improving the efficiency of N use is essential to reduce the cost of commercial fertilization in plant production. Since cells cannot store reduced N as NH3 or NH4 +, polyamines (PAs), the low molecular weight aliphatic nitrogenous bases, are important N storage compounds in plants. Manipulating polyamines may provide a method to increase nitrogen remobilization efficiency. Homeostasis of PAs is maintained by intricate multiple feedback mechanisms at the level of biosynthesis, catabolism, efflux, and uptake. The molecular characterization of the PA uptake transporter (PUT) in most crop plants remains largely unknown, and knowledge of polyamine exporters in plants is lacking. Bi-directional amino acid transporters (BATs) have been recently suggested as possible PAs exporters for Arabidopsis and rice, however, detailed characterization of these genes in crops is missing. This report describes the first systematic study to comprehensively analyze PA transporters in barley (Hordeum vulgare, Hv), specifically the PUT and BAT gene families. Here, seven PUTs (HvPUT1-7) and six BATs (HvBAT1-6) genes were identified as PA transporters in the barley genome and the detailed characterization of these HvPUT and HvBAT genes and proteins is provided. Homology modeling of all studied PA transporters provided 3D structures prediction of the proteins of interest with high accuracy. Moreover, molecular docking studies provided insights into the PA-binding pockets of HvPUTs and HvBATs facilitating improved understanding of the mechanisms and interactions involved in HvPUT/HvBAT-mediated transport of PAs. We also examined the physiochemical characteristics of PA transporters and discuss the function of PA transporters in barley development, and how they help barley respond to stress, with a particular emphasis on leaf senescence. Insights gained here could lead to improved barley production via modulation of polyamine homeostasis.

15.
JCI Insight ; 8(18)2023 09 22.
Article in English | MEDLINE | ID: mdl-37581943

ABSTRACT

Glutaminolysis is a hallmark of the activation and metabolic reprogramming of T cells. Isotopic tracer analyses of antigen-activated effector CD8+ T cells revealed that glutamine is the principal carbon source for the biosynthesis of polyamines putrescine, spermidine, and spermine. These metabolites play critical roles in activation-induced T cell proliferation, as well as for the production of hypusine, which is derived from spermidine and is covalently linked to the translation elongation factor eukaryotic translation initiation factor 5A (eIF5A). Here, we demonstrated that the glutamine/polyamine/hypusine axis controlled the expression of CD69, an important regulator of tissue-resident memory T cells (Trm). Inhibition of this circuit augmented the development of Trm cells ex vivo and in vivo in the BM, a well-established niche for Trm cells. Furthermore, blocking the polyamine/hypusine axis augmented CD69 expression as well as IFN-γ and TNF-α production in (a) human CD8+ T cells from peripheral blood and sarcoma tumor infiltrating lymphocytes and (b) human CD8+ CAR-T cells. Collectively, these findings support the notion that the polyamine-hypusine circuit can be exploited to modulate Trm cells for therapeutic benefit.


Subject(s)
Polyamines , Spermidine , Humans , Polyamines/metabolism , Spermidine/metabolism , Memory T Cells , Glutamine/metabolism , CD8-Positive T-Lymphocytes/metabolism
16.
J Org Chem ; 77(23): 10835-45, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23190119

ABSTRACT

A series of O-(4-nitrophenyl)hydroxylamines were synthesized from their respective oximes using a pulsed addition of excess NaBH(3)CN at pH 3 in 65-75% yield. Steric hindrance near the oxime functional group played a key role in both the ease by which the oxime could be reduced and the subsequent reactivity of the respective hydroxylamine. Reaction of the respective hydroxylamines with pyruvic acid derivatives generated the desired amides in good yields. A comparison of phenethylamine systems bearing different leaving groups revealed significant differences in the rates of these systems and suggested that the leaving group ability of the N-OR substituent plays an important role in determining their reactivity with pyruvic acid. Competition experiments (in 68% DMSO/phosphate buffered saline) using 1 equiv of N-phenethyl-O-(4-nitrophenyl)hydroxylamine and 2 equiv of pyruvic acid in the presence of other nucleophiles such as glycine, cysteine, phenol, hexanoic acid, and lysine demonstrated that significant chemoselectivity is present in this reaction. The results suggest that this chemoselective reaction can occur in the presence of excess α-amino acids, phenols, acids, thiols, and amines.


Subject(s)
Amides/chemistry , Hydroxylamines/chemical synthesis , Nitrophenols/chemical synthesis , Pyruvic Acid/chemistry , Amines/chemistry , Amino Acids/chemistry , Hydroxylamines/chemistry , Molecular Structure , Nitrophenols/chemistry , Phenols/chemistry
17.
Sci Rep ; 12(1): 4045, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260637

ABSTRACT

The purpose of this study is to provide an increased understanding of the molecular mechanisms responsible for mammalian polyamine transport, a process that has been a long-standing 'black box' for the polyamine field. Here, we describe how ATP13A3, a P-type ATPase, functions as a polyamine transporter in response to different polyamine stimuli and polyamine-targeted therapies in highly proliferating pancreatic cancer cells. We assessed the expression, cellular localization and the response of the human ATP13A3 protein to polyamine treatments in different pancreatic cancer cell lines using Western blot and immunofluorescence microscopy. Using CRISPR mutagenesis and radiolabeled polyamine uptake assays, we investigated the role of ATP13A3 protein in polyamine transport. Highly metastatic cancer cells with high polyamine import express higher levels of the full-length ATP13A3 compared to cells with slow proliferation and low import activity. Highlighting its role in polyamine trafficking, the localization of ATP13A3 is altered in the presence of polyamine stimuli and polyamine-targeted therapies in these cells. Using CRISPR mutagenesis, we demonstrate that the first membrane-associated domain of this protein is critical and indispensable for its function as a spermidine and spermine transporter in cells. Further analysis of existing databases revealed that pancreatic cancer patients with high expression of ATP13A3 have decreased overall survival consistent with the role of intracellular polyamines in supporting tumor growth. Our studies shed light on the mysterious polyamine transport process in human cells and clearly establishes ATP13A3 as an intrinsic component of the spermidine and spermine transport system in humans.


Subject(s)
Pancreatic Neoplasms , Spermidine , Adenosine Triphosphatases/metabolism , Animals , Biological Transport , Humans , Mammals/metabolism , Membrane Transport Proteins/metabolism , Pancreatic Neoplasms/genetics , Polyamines/metabolism , Spermidine/metabolism , Spermidine/pharmacology , Spermine/metabolism , Spermine/pharmacology
18.
ACS Med Chem Lett ; 13(2): 319-326, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35178189

ABSTRACT

Nine- and twelve-membered triaza-macrocycles were appended to one end of homospermidine to make polyamine lassos. These compounds were shown to be potent polyamine transport inhibitors (PTIs) using pancreatic ductal adenocarcinoma L3.6pl cells, which have high polyamine transport activity. The smaller triazacyclononane-based lasso significantly reduced the uptake of a fluorescent polyamine probe and inhibited spermidine uptake and reduced intracellular polyamine levels in difluoromethylornithine (DFMO)-treated L3.6pl cells. Both designs were shown to be effective inhibitors of 3H-spermidine uptake, with the smaller lasso outperforming the larger lasso. When the smaller lasso was challenged to inhibit each of the three radiolabeled native polyamines, it had similar K i values as those of the known PTIs, Trimer44NMe and AMXT1501. Because of these promising properties, these materials may have future anticancer applications in polyamine blocking therapy, an approach that couples a polyamine biosynthesis inhibitor (DFMO) with a PTI to lower intracellular polyamines and suppress cell growth.

19.
Med Sci (Basel) ; 10(3)2022 08 25.
Article in English | MEDLINE | ID: mdl-36135830

ABSTRACT

Polyamines are small organic cations that are essential for many biological processes such as cell proliferation and cell cycle progression. While the metabolism of polyamines has been well studied, the mechanisms by which polyamines are transported into and out of cells are poorly understood. Here, we describe a novel role of Chmp1, a vesicular trafficking protein, in the transport of polyamines using a well-defined leg imaginal disc assay in Drosophila melanogaster larvae. We show that Chmp1 overexpression had no effect on leg development in Drosophila, but does attenuate the negative impact on leg development of Ant44, a cytotoxic drug known to enter cells through the polyamine transport system (PTS), suggesting that the overexpression of Chmp1 downregulated the PTS. Moreover, we showed that the addition of spermine did not rescue the leg development in Chmp1-overexpressing leg discs treated with difluoromethylornithine (DFMO), an inhibitor of polyamine metabolism, while putrescine and spermidine did, suggesting that there may be unique mechanisms of import for individual polyamines. Thus, our data provide novel insight into the underlying mechanisms that are involved in polyamine transport and highlight the utility of the Drosophila imaginal disc assay as a fast and easy way to study potential players involved in the PTS.


Subject(s)
Polyamines , Spermidine , Animals , Drosophila melanogaster/metabolism , Eflornithine/pharmacology , Polyamines/metabolism , Polyamines/pharmacology , Putrescine/metabolism , Putrescine/pharmacology , Spermidine/metabolism , Spermidine/pharmacology , Spermine/metabolism , Spermine/pharmacology
20.
Sci Rep ; 12(1): 11804, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35821246

ABSTRACT

Polyamines are small cationic molecules that have been linked to various cellular processes including replication, translation, stress response and recently, capsule regulation in Streptococcus pneumoniae (Spn, pneumococcus). Pneumococcal-associated diseases such as pneumonia, meningitis, and sepsis are some of the leading causes of death worldwide and capsule remains the principal virulence factor of this versatile pathogen. α-Difluoromethyl-ornithine (DFMO) is an irreversible inhibitor of the polyamine biosynthesis pathway catalyzed by ornithine decarboxylase and has a long history in modulating cell growth, polyamine levels, and disease outcomes in eukaryotic systems. Recent evidence shows that DFMO can also target arginine decarboxylation. Interestingly, DFMO-treated cells often escape polyamine depletion via increased polyamine uptake from extracellular sources. Here, we examined the potential capsule-crippling ability of DFMO and the possible synergistic effects of the polyamine transport inhibitor, AMXT 1501, on pneumococci. We characterized the changes in pneumococcal metabolites in response to DFMO and AMXT 1501, and also measured the impact of DFMO on amino acid decarboxylase activities. Our findings show that DFMO inhibited pneumococcal polyamine and capsule biosynthesis as well as decarboxylase activities, albeit, at a high concentration. AMXT 1501 at physiologically relevant concentration could inhibit both polyamine and capsule biosynthesis, however, in a serotype-dependent manner. In summary, this study demonstrates the utility of targeting polyamine biosynthesis and transport for pneumococcal capsule inhibition. Since targeting capsule biosynthesis is a promising way for the eradication of the diverse and pathogenic pneumococcal strains, future work will identify small molecules similar to DFMO/AMXT 1501, which act in a serotype-independent manner.


Subject(s)
Antineoplastic Agents , Eflornithine , Eflornithine/pharmacology , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase Inhibitors , Polyamines/metabolism , Streptococcus pneumoniae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL