ABSTRACT
PURPOSE: To evaluate the distribution of the PAX8 transcription factor protein in ocular tissues and to investigate if immunohistochemical stains for this biomarker are useful in the diagnosis of intraocular tumors. DESIGN: Observational case series. PARTICIPANTS: Excision and cytologic analysis specimens of 6 ciliary body epithelial neoplasms, 2 iris epithelial neoplasms, 3 retinal pigment epithelial neoplasms, 3 intraocular medulloepitheliomas, 15 uveal melanomas, and 5 uveal melanocytomas. METHODS: Hematoxylin-eosin and PAX8 immunohistochemical stains were performed on all specimens. In appropriate cases, bleached preparations and other immunohistochemical stains, including AE1/AE3 cytokeratin, Lin28A, and CD45, were performed. MAIN OUTCOME MEASURES: Distribution of PAX8 expression in normal and neoplastic tissue. RESULTS: Strong nuclear PAX8 expression was observed in the normal corneal epithelium, iris sphincter pupillae muscle, iris pigment epithelium and dilator muscle complex, nonpigmented and pigmented epithelia of the ciliary body, lens epithelium, and a subset of retinal neurons. The normal retinal pigment epithelium and uveal melanocytes did not stain for PAX8. The ciliary body epithelial and neuroepithelial tumors (adenoma, adenocarcinoma, and medulloepithelioma) showed uniform strong nuclear PAX8 immunoreactivity. All melanocytic tumors (iris melanoma, ciliary-choroidal melanoma, and melanocytoma) and retinal pigment epithelial neoplasms showed negative results for PAX8. A subset of tumor-associated lymphocytes, most prominent in uveal melanoma, showed positive results for PAX8. The uniformity of the PAX8 staining was superior to the variable cytokeratin staining in the ciliary epithelial neoplasms and the variable Lin28A staining in malignant medulloepithelioma. The veracity of PAX8 staining was equally as robust on cytologic analysis and open-flap biopsy specimens of ciliary epithelial and iris epithelial neoplasms, melanocytoma, and melanoma. CONCLUSIONS: PAX8 has proven to be a very useful diagnostic marker in a select group of adult intraocular tumors, and we highly recommend its inclusion in diagnostic antibody panels of morphologically challenging intraocular neoplasms.
Subject(s)
Biomarkers, Tumor/metabolism , Eye Neoplasms/diagnosis , Eye Neoplasms/metabolism , PAX8 Transcription Factor/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Ciliary Body/metabolism , Ciliary Body/pathology , Female , Humans , Immunohistochemistry , Iris Neoplasms/diagnosis , Iris Neoplasms/metabolism , Keratins/metabolism , Leukocyte Common Antigens/metabolism , Male , Melanoma/diagnosis , Melanoma/metabolism , Middle Aged , Neoplasms, Glandular and Epithelial/diagnosis , Neoplasms, Glandular and Epithelial/metabolism , RNA-Binding Proteins/metabolism , Retinal Neoplasms/diagnosis , Retinal Neoplasms/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Uveal Neoplasms/diagnosis , Uveal Neoplasms/metabolismABSTRACT
PURPOSE: High tumor production of the EGFR ligands, amphiregulin (AREG) and epiregulin (EREG), predicted benefit from anti-EGFR therapy for metastatic colorectal cancer (mCRC) in a retrospective analysis of clinical trial data. Here, AREG/EREG IHC was analyzed in a cohort of patients who received anti-EGFR therapy as part of routine care, including key clinical contexts not investigated in the previous analysis. EXPERIMENTAL DESIGN: Patients who received panitumumab or cetuximab ± chemotherapy for treatment of RAS wild-type mCRC at eight UK cancer centers were eligible. Archival formalin-fixed paraffin-embedded tumor tissue was analyzed for AREG and EREG IHC in six regional laboratories using previously developed artificial intelligence technologies. Primary endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS: A total of 494 of 541 patients (91.3%) had adequate tissue for analysis. A total of 45 were excluded after central extended RAS testing, leaving 449 patients in the primary analysis population. After adjustment for additional prognostic factors, high AREG/EREG expression (n = 360; 80.2%) was associated with significantly prolonged PFS [median: 8.5 vs. 4.4 months; HR, 0.73; 95% confidence interval (CI), 0.56-0.95; P = 0.02] and OS [median: 16.4 vs. 8.9 months; HR, 0.66 95% CI, 0.50-0.86; P = 0.002]. The significant OS benefit was maintained among patients with right primary tumor location (PTL), those receiving cetuximab or panitumumab, those with an oxaliplatin- or irinotecan-based chemotherapy backbone, and those with tumor tissue obtained by biopsy or surgical resection. CONCLUSIONS: High tumor AREG/EREG expression was associated with superior survival outcomes from anti-EGFR therapy in mCRC, including in right PTL disease. AREG/EREG IHC assessment could aid therapeutic decisions in routine practice. See related commentary by Randon and Pietrantonio, p. 4021.