Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Protein Cell ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121016

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and non-pharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.

2.
Protein Cell ; 14(5): 318-336, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37027487

ABSTRACT

Emerging evidence suggests that intron-detaining transcripts (IDTs) are a nucleus-detained and polyadenylated mRNA pool for cell to quickly and effectively respond to environmental stimuli and stress. However, the underlying mechanisms of detained intron (DI) splicing are still largely unknown. Here, we suggest that post-transcriptional DI splicing is paused at the Bact state, an active spliceosome but not catalytically primed, which depends on Smad Nuclear Interacting Protein 1 (SNIP1) and RNPS1 (a serine-rich RNA binding protein) interaction. RNPS1 and Bact components preferentially dock at DIs and the RNPS1 docking is sufficient to trigger spliceosome pausing. Haploinsufficiency of Snip1 attenuates neurodegeneration and globally rescues IDT accumulation caused by a previously reported mutant U2 snRNA, a basal spliceosomal component. Snip1 conditional knockout in the cerebellum decreases DI splicing efficiency and causes neurodegeneration. Therefore, we suggest that SNIP1 and RNPS1 form a molecular brake to promote spliceosome pausing, and that its misregulation contributes to neurodegeneration.


Subject(s)
RNA Splicing , Spliceosomes , Spliceosomes/genetics , Spliceosomes/metabolism , Introns/genetics , RNA, Messenger/genetics , Cell Nucleus/metabolism
3.
Cell Res ; 33(7): 497-515, 2023 07.
Article in English | MEDLINE | ID: mdl-37142673

ABSTRACT

Although anion channel activities have been demonstrated in sarcoplasmic reticulum/endoplasmic reticulum (SR/ER), their molecular identities and functions remain unclear. Here, we link rare variants of Chloride Channel CLIC Like 1 (CLCC1) to amyotrophic lateral sclerosis (ALS)-like pathologies. We demonstrate that CLCC1 is a pore-forming component of an ER anion channel and that ALS-associated mutations impair channel conductance. CLCC1 forms homomultimers and its channel activity is inhibited by luminal Ca2+ but facilitated by phosphatidylinositol 4,5-bisphosphate (PIP2). We identified conserved residues D25 and D181 in CLCC1 N-terminus responsible for Ca2+ binding and luminal Ca2+-mediated inhibition on channel open probability and K298 in CLCC1 intraluminal loop as the critical PIP2-sensing residue. CLCC1 maintains steady-state [Cl-]ER and [K+]ER and ER morphology and regulates ER Ca2+ homeostasis, including internal Ca2+ release and steady-state [Ca2+]ER. ALS-associated mutant forms of CLCC1 increase steady-state [Cl-]ER and impair ER Ca2+ homeostasis, and animals with the ALS-associated mutations are sensitized to stress challenge-induced protein misfolding. Phenotypic comparisons of multiple Clcc1 loss-of-function alleles, including ALS-associated mutations, reveal a CLCC1 dosage dependence in the severity of disease phenotypes in vivo. Similar to CLCC1 rare variations dominant in ALS, 10% of K298A heterozygous mice developed ALS-like symptoms, pointing to a mechanism of channelopathy dominant-negatively induced by a loss-of-function mutation. Conditional knockout of Clcc1 cell-autonomously causes motor neuron loss and ER stress, misfolded protein accumulation, and characteristic ALS pathologies in the spinal cord. Thus, our findings support that disruption of ER ion homeostasis maintained by CLCC1 contributes to ALS-like pathologies.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Biological Transport , Chloride Channels/genetics , Chloride Channels/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Mitochondrial Proteins/metabolism , Mutation/genetics
4.
Sci Rep ; 12(1): 5672, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383205

ABSTRACT

C9ORF72 GGGGCC repeat expansion is the most common genetic cause for amyotrophic lateral sclerosis and frontotemporal dementia, which generates abnormal DNA and RNA structures and produces toxic proteins. Recently, efficacy of CRISPR/Cas9-mediated editing has been proven in treatment of disease. However, DNA low complexity surrounding C9ORF72 expansion increases the off-target risks. Here we provide a dual-gRNA design outside of the low complexity region which enables us to remove the repeat DNA in a 'cutting-deletion-fusion' manner with a high fusion efficiency (50%). Our dual-gRNA design limits off-target effect and does not significantly affect C9ORF72 expression. In neurons carrying patient C9ORF72 expansion, our approach removes the repeat DNA and corrects the RNA foci in vitro and in vivo. Therefore, we conclude that our proof-of-concept design correct C9ORF72 repeat expansion, which may have potential therapeutic value for the patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Humans , RNA, Guide, Kinetoplastida
SELECTION OF CITATIONS
SEARCH DETAIL