Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Genes Cells ; 28(5): 383-389, 2023 May.
Article in English | MEDLINE | ID: mdl-36823718

ABSTRACT

The RNA-binding protein (RBP) Regnase-1 is an endonuclease that regulates immune responses by modulating target mRNA stability. Regnase-1 degrades a group of inflammation-associated mRNAs, which contributes to a balanced immune response and helps prevent autoimmune diseases. Regnase-1 also cleaves its own mRNA by binding stem-loop (SL) RNA structures in its 3'UTR. To understand how this autoregulation is important for immune responses, we generated mice with a 2-bp genome deletion in the target SL of the Regnase-1 3'-untranslated region (3'UTR). Deletion of these nucleotides inhibited SL formation and limited Regnase-1-mediated mRNA degradation. Mutant mice had normal hematopoietic cell differentiation. Biochemically, mutation of the 3'UTR SL increased Regnase-1 mRNA stability and enhanced both Regnase-1 mRNA and protein levels in mouse embryonic fibroblasts (MEFs). The expression of Il6, a Regnase-1 target gene, was constitutively suppressed at steady-state in mutant MEFs. Additionally, Regnase-1 protein expression in mutant MEFs was significantly elevated compared to that in wild-type MEFs at steady state and upon proinflammatory cytokine stimulation. These data suggest a negative feedback mechanism for Regnase-1 expression and represent a unique mouse model to probe Regnase-1 overexpression in vivo.


Subject(s)
Ribonucleases , Self-Control , Animals , Mice , Ribonucleases/genetics , 3' Untranslated Regions/genetics , Fibroblasts/metabolism , Inflammation/genetics
2.
Biochem Biophys Res Commun ; 500(4): 866-872, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29705700

ABSTRACT

Glycosmis parva is a small shrub found in Thailand. Ethyl acetate (EtOAc) extract from its leaves has been shown to exert anticancer effects in vitro; however, the compound responsible for this activity has not been isolated and characterized. In this study, we demonstrate that arborinine, a major acridone alkaloid in the EtOAc fraction, decreased proliferation and was strongly cytotoxic to HeLa cervical cancer cells without significantly affecting normal cells. The compound also inhibited tumor spheroid growth much more potently than chemotherapeutic drugs bleomycin, gemcitabine, and cisplatin. In addition, unlike cisplatin, arborinine activated caspase-dependent apoptosis without inducing DNA damage response. We further show that arborinine strongly suppressed cancer cell migration by downregulating expression of key regulators of epithelial-mesenchymal transition. Taken together, our data provide important insights into the molecular mechanism of arborinine's anticancer activity, supporting its potential use for treating cervical cancer.


Subject(s)
Acridines/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic , Rutaceae/chemistry , Acridines/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Bleomycin/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Caspase 7/genetics , Caspase 7/metabolism , Cell Line, Transformed , Cell Proliferation/drug effects , Cisplatin/pharmacology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , HeLa Cells , Humans , Plant Extracts/chemistry , Plant Leaves/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism , Gemcitabine
3.
Biomed Pharmacother ; 145: 112461, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34839253

ABSTRACT

Skin aging is accompanied by an increase in the number of senescent cells, resulting in various pathological outcomes. These include inflammation, impaired barrier function, and susceptibility to skin disorders such as cancer. Kaempferia parviflora (Thai black ginger), a medicinal plant native to Thailand, has been shown to counteract inflammation, cancer, and senescence. This study demonstrates that polymethoxyflavones (5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone) purified from K. parviflora rhizomes suppressed cellular senescence, reactive oxygen species, and the senescence-associated secretory phenotype in primary human dermal fibroblasts. In addition, they increased tropocollagen synthesis and alleviated free radical-induced cellular and mitochondrial damage. Moreover, the compounds mitigated chronological aging in a human ex vivo skin model by attenuating senescence and restoring expression of essential components of the extracellular matrix, including collagen type I, fibrillin-1, and hyaluronic acid. Finally, we report that polymethoxyflavones enhanced epidermal thickness and epidermal-dermal stability, while blocking age-related inflammation in skin explants. Our findings support the use of polymethoxyflavones from K. parviflora as natural anti-aging agents, highlighting their potential as active ingredients in cosmeceutical and nutraceutical products.


Subject(s)
Collagen Type I/metabolism , Extracellular Matrix , Flavonoids/pharmacology , Hyaluronic Acid/metabolism , Skin Aging , Skin , Zingiberaceae , Cell Line , Extracellular Matrix/drug effects , Extracellular Matrix/physiology , Fibrillin-1/metabolism , Fibroblasts/metabolism , Flavones/pharmacology , Geroscience , Humans , Rhizome , Skin/drug effects , Skin/metabolism , Skin Aging/drug effects , Skin Aging/physiology , Thailand
4.
Exp Biol Med (Maywood) ; 246(6): 654-666, 2021 03.
Article in English | MEDLINE | ID: mdl-33307803

ABSTRACT

Circulating cell-free DNA (cfDNA) has attracted attention as a non-invasive biomarker for diagnosing and monitoring various cancers. Given that human papillomavirus (HPV) DNA integration and overexpression of E6/E7 oncogenes are pivotal events for carcinogenesis, we sought to determine if HPV E7 cfDNA could serve as a specific biomarker for cervical cancer detection. We applied droplet digital PCR (ddPCR) to quantify HPV16/18 E7 cfDNA from the serum of patients with cervical cancer, cervical intraepithelial neoplasia, and controls. HPV16/18 E7 cfDNA was highly specific for cervical cancer, displaying 30.77% sensitivity, 100% specificity, and an area under the curve of 0.65. Furthermore, we developed a sensitive isothermal detection of HPV16/18 E7 and the PIK3CA WT reference gene based on recombinase polymerase amplification combined with a lateral flow strip (RPA-LF). The assay took less than 30 min and the detection limit was 5-10 copies. RPA-LF exhibited 100% sensitivity and 88.24% specificity towards HPV16/18 E7 cfDNA in clinical samples. The agreement between RPA-LF and ddPCR was 83.33% (κ = 0.67) for HPV16 E7 and 100% (κ = 1.0) for HPV18 E7, indicating a good correlation between both tests. Therefore, we conclude that HPV E7 cfDNA represents a potential tumor marker with excellent specificity and moderate sensitivity for minimally invasive cervical cancer monitoring. Moreover, the RPA-LF assay provides an affordable, rapid, and ultrasensitive tool for detecting HPV cfDNA in resource-limited settings.


Subject(s)
Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , DNA, Viral/genetics , DNA-Binding Proteins/blood , Oncogene Proteins, Viral/blood , Papillomaviridae/genetics , Papillomavirus E7 Proteins/blood , Uterine Cervical Neoplasms/virology , Adult , Case-Control Studies , Class I Phosphatidylinositol 3-Kinases/genetics , DNA, Viral/blood , DNA-Binding Proteins/genetics , Female , Humans , Middle Aged , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Polymerase Chain Reaction , ROC Curve , Uterine Cervical Neoplasms/diagnosis
5.
Biomolecules ; 9(9)2019 09 16.
Article in English | MEDLINE | ID: mdl-31527550

ABSTRACT

Crinumasiaticum is a perennial herb widely distributed in many warmer regions, including Thailand, and is well-known for its medicinal and ornamental values. Crinum alkaloids contain numerous compounds, such as crinamine. Even though its mechanism of action is still unknown, crinamine was previously shown to possess anticancer activity. In this study, we demonstrate that crinamine was more cytotoxic to cervical cancer cells than normal cells. It also inhibited anchorage-independent tumor spheroid growth more effectively than existing chemotherapeutic drugs carboplatin and 5-fluorouracil or the CDK9 inhibitor FIT-039. Additionally, unlike cisplatin, crinamine induced apoptosis without promoting DNA double-strand breaks. It suppressed cervical cancer cell migration by inhibiting the expression of positive regulators of epithelial-mesenchymal transition SNAI1 and VIM. Importantly, crinamine also exerted anti-angiogenic activities by inhibiting secretion of VEGF-A protein in cervical cancer cells and blood vessel development in zebrafish embryos. Gene expression analysis revealed that its mechanism of action might be attributed, in part, to downregulation of cancer-related genes, such as AKT1, BCL2L1, CCND1, CDK4, PLK1, and RHOA. Our findings provide a first insight into crinamine's anticancer activity, highlighting its potential use as an alternative bioactive compound for cervical cancer chemoprevention and therapy.


Subject(s)
Amaryllidaceae Alkaloids/administration & dosage , Angiogenesis Inhibitors/administration & dosage , Crinum/chemistry , Snail Family Transcription Factors/metabolism , Uterine Cervical Neoplasms/metabolism , Vimentin/metabolism , Amaryllidaceae Alkaloids/pharmacology , Angiogenesis Inhibitors/pharmacology , Animals , Carboplatin/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Plant Extracts/chemistry , Pyridines/pharmacology , Uterine Cervical Neoplasms/blood supply , Uterine Cervical Neoplasms/drug therapy , Zebrafish/embryology
6.
FEBS Open Bio ; 8(11): 1844-1854, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30410863

ABSTRACT

Circulating lncRNAs have attracted considerable attention as potential noninvasive biomarkers for diagnosing cancers. RT-qPCR is the canonical technique for detecting circulating RNA and depends largely on stable reference genes for data normalization. However, no systematic evaluation of reference genes for serum lncRNA has been reported for cervical cancer. Here, we profiled and validated lncRNA expression from serum of cervical cancer patients and controls using microarrays and RT-qPCR. We identified lncRNA RP11-204K16.1, XLOC_012542, and U6 small nuclear RNA as the most stable reference genes based on geNorm, NormFinder, BestKeeper, delta Ct, and RefFinder. These genes were suitable also for samples from different age groups or with hemolysis. Additionally, we discovered lncRNA AC017078.1 and XLOC_011152 as candidate biomarkers, whose expression was down-regulated in cervical cancer. Our findings could aid research on circulating lncRNA and the discovery of blood-based biomarkers for cervical cancer diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL