Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Negl Trop Dis ; 16(7): e0010059, 2022 07.
Article in English | MEDLINE | ID: mdl-35793379

ABSTRACT

BACKGROUND: Dengue's emergence in West Africa was typified by the Burkina Faso outbreaks in 2016 and 2017, the nation's largest to date. In both years, we undertook three-month surveys of Aedes populations in or near the capital city Ouagadougou, where the outbreaks were centered. METHODOLOGY: In 1200LG (urban), Tabtenga (peri-urban) and Goundry (rural) localities, we collected indoor and outdoor resting mosquito adults, characterized larval habitats and containers producing pupae and reared immature stages to adulthood in the laboratory for identification. All mosquito adults were identified morphologically. Host species (from which bloodmeals were taken) were identified by PCR. Generalized mixed models were used to investigate relationships between adult or larval densities and multiple explanatory variables. RESULTS: From samples in 1,780 houses, adult Ae. aegypti were significantly more abundant in the two urban localities (Tabtenga and 1200 LG) in both years than in the rural site (Goundry), where Anopheles spp. were far more common. Results from adult collections indicated a highly exophilic and anthropophilic (>90% bloodmeals of human origin) vector population, but with a relatively high proportion of bloodfed females caught inside houses. Habitats producing most pupae were waste tires (37% of total pupae), animal troughs (44%) and large water barrels (30%). While Stegomyia indices were not reliable indicators of adult mosquito abundance, shared influences on adult and immature stage densities included rainfall and container water level, collection month and container type/purpose. Spatial analysis showed autocorrelation of densities, with a partial overlap in adult and immature stage hotspots. CONCLUSION: Results provide an evidence base for the selection of appropriate vector control methods to minimize the risk, frequency and magnitude of future outbreaks in Ouagadougou. An integrated strategy combining community-driven practices, waste disposal and insecticide-based interventions is proposed. The prospects for developing a regional approach to arbovirus control in West Africa or across Africa are discussed.


Subject(s)
Aedes , Arboviruses , Dengue , Adult , Animals , Burkina Faso/epidemiology , Dengue/epidemiology , Disease Outbreaks , Ecology , Female , Humans , Larva , Mosquito Vectors , Pupa , Water
2.
PLoS Genet ; 4(11): e1000286, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19043575

ABSTRACT

Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non-alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations.


Subject(s)
Anopheles/enzymology , Cytochrome P-450 Enzyme System/metabolism , Insect Proteins/metabolism , Insecticides/metabolism , Permethrin/metabolism , Animals , Anopheles/drug effects , Anopheles/genetics , Cloning, Molecular , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/metabolism , Genotype , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Permethrin/pharmacology
3.
PLoS Negl Trop Dis ; 13(5): e0007439, 2019 05.
Article in English | MEDLINE | ID: mdl-31120874

ABSTRACT

BACKGROUND: Recent outbreaks of dengue and other Aedes aegypti-borne arboviruses highlight the importance of a rapid response for effective vector control. Data on insecticide resistance and underlying mechanisms are essential for outbreak preparedness, but are sparse in much of Africa. We investigated the levels and heterogeneity of insecticide resistance and mechanisms of Ae. aegypti from contrasting settings within and around Ouagadougou, Burkina Faso. METHODOLOGY/PRINCIPAL FINDINGS: Bioassays were performed on larvae and adults to diagnose prevalence of resistance, and to assess levels where resistance was detected. Investigation of resistance mechanisms was performed using synergist bioassays, knockdown resistance (kdr) target site mutation genotyping and quantitative PCR expression analysis of candidate P450 genes. Larval dose-response assays indicated susceptibility to the organophosphates tested. Adult females were also susceptible to organophosphates, but resistance to carbamates was suspected in urban and semi-urban localities. Females from all localities showed resistance to pyrethroids but resistance prevalence and level were higher in urban and especially in semi-urban areas, compared to the rural population. Environment was also associated with susceptibility: adults reared from larvae collected in tires from the semi-urban site were significantly less resistant to pyrethroids than those collected from large outdoor drinking water containers ('drums'). Susceptibility to both pyrethroids tested was largely restored by pre-exposure to Piperonyl Butoxide (PBO), suggesting a strong metabolic basis to resistance. The 1534C kdr mutation was nearly fixed in semi-urban and urban areas but was far less common in the rural area, where the 1016I kdr mutation frequency was also significantly lower. P450 gene analysis detected limited over-expression of single candidates but significantly elevated average expression in the semi-urban site compared to both a susceptible laboratory colony, and females from the other collection sites. CONCLUSIONS/SIGNIFICANCE: Our results reveal pyrethroid resistance and paired kdr mutations in both urban and semi-urban sites at levels that are unprecedented for mainland Africa. The combination of target site and metabolic mechanisms is common in Ae. aegypti populations from other continents but is a worrying finding for African populations. However, organophosphate insecticides are still active against both larvae and adults of Ae. aegypti, providing useful insecticidal options for control and resistance management.


Subject(s)
Aedes/drug effects , Insecticide Resistance , Insecticides/pharmacology , Aedes/genetics , Aedes/growth & development , Animals , Burkina Faso , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/drug effects , Larva/genetics , Larva/growth & development , Male , Organophosphates/pharmacology , Pyrethrins/pharmacology
4.
Proc Natl Acad Sci U S A ; 102(11): 4080-4, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15753317

ABSTRACT

Metabolic pathways play an important role in insecticide resistance, but the full spectra of the genes involved in resistance has not been established. We constructed a microarray containing unique fragments from 230 Anopheles gambiae genes putatively involved in insecticide metabolism [cytochrome P450s (P450s), GSTs, and carboxylesterases and redox genes, partners of the P450 oxidative metabolic complex, and various controls]. We used this detox chip to monitor the expression of the detoxifying genes in insecticide resistant and susceptible An. gambiae laboratory strains. Five genes were strongly up-regulated in the dichlorodiphenyltrichloroethane-resistant strain ZAN/U. These genes included the GST GSTE2, which has previously been implicated in dichlorodiphenyltrichloroethane resistance, two P450s, and two peroxidase genes. GSTE2 was also elevated in the pyrethroid-resistant RSP strain. In addition, the P450 CYP325A3, belonging to a class not previously associated with insecticide resistance, was expressed at statistically higher levels in this strain. The applications of this detox chip and its potential contribution to malaria vector insecticide resistance management programs are discussed.


Subject(s)
Anopheles/genetics , Oligonucleotide Array Sequence Analysis , Anopheles/metabolism , Cytochrome P-450 Enzyme System/metabolism , DDT/metabolism , Gene Expression Profiling , Insecticide Resistance/genetics , Insecticide Resistance/physiology , Insecticides/metabolism , Malaria/prevention & control , Malaria/transmission , Permethrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL