ABSTRACT
BACKGROUND: During antiretroviral therapy (ART), the HIV reservoir exhibits variability as cells with intact genomes decay faster than those with defective genomes, especially in the first years of therapy. The host factors influencing this decay are yet to be characterized. METHODS: Observational study in 74 PWH on ART, of whom 70 (94.6%) were male. We used the intact proviral DNA assay to measure intact proviruses and Luminex immunoassay to measure 32 inflammatory cytokines in plasma. Linear spline models, with a knot at seven years, evaluated the impact of baseline cytokine levels and their trajectories on intact HIV kinetics over these years. RESULTS: Baseline Gal-9 was the most predictive marker for intact HIV kinetics, with lower Gal-9 predicting faster decay over the subsequent seven years. For each 10-fold decrease in Gal-9 at baseline, there was a mean 45% (95%CI 14%-84%) greater decay of intact HIV genomes per year. Conversely, higher baseline ITAC, IL-17, and MIP-1α predicted faster intact HIV decreases. Longitudinal changes in MIP-3α and IL-6 levels strongly associated with intact HIV kinetics, with a 10-fold increase in MIP-3α and a 10-fold decrease in IL-6 associated with a a 9.5% and 10% faster decay of intact HIV genomes per year, respectively. CONCLUSION: The pronounced association between baseline Gal-9 levels and subsequent intact HIV decay suggests that strategies reducing Gal-9 levels could accelerate reservoir decay. Additionally, the correlations of MIP-3α and IL-6 with HIV kinetics indicate a broader cytokine-mediated regulatory network, hinting at multi-targeted interventions that could modulate HIV reservoir dynamics.
ABSTRACT
The US Coast Guard Academy began adenovirus vaccination of incoming cadets in 2022. Of 294 vaccine recipients, 15%-20% had mild respiratory or systemic symptoms within 10 days postvaccination but no serious adverse events after 90 days. Our findings support the continued use of adenovirus vaccines in congregate military settings.
Subject(s)
Adenovirus Vaccines , Military Personnel , United States/epidemiology , Humans , Adenovirus Vaccines/adverse effectsABSTRACT
An outbreak of novel coronavirus (2019-nCoV) that began in Wuhan, China, has spread rapidly, with cases now confirmed in multiple countries. We report the first case of 2019-nCoV infection confirmed in the United States and describe the identification, diagnosis, clinical course, and management of the case, including the patient's initial mild symptoms at presentation with progression to pneumonia on day 9 of illness. This case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels, as well as the need for rapid dissemination of clinical information related to the care of patients with this emerging infection.
Subject(s)
Betacoronavirus/genetics , Coronavirus Infections , Lung/diagnostic imaging , Pneumonia, Viral , Adult , Betacoronavirus/isolation & purification , Blood Chemical Analysis , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Disease Progression , Genome, Viral , Humans , Lung/pathology , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Radiography, Thoracic , SARS-CoV-2 , Sequence Analysis, DNA , Travel , United StatesABSTRACT
HIV persistence and neuroinflammation are known to contribute to HIV-associated neuropathology. However, the multifaceted pathways driving impairment remain poorly understood. Galectin-glycan interactions have emerged as significant contributors to neuroinflammatory processes and may play a role in neuroHIV. Here, we quantified Galectin-9 (Gal-9), a pleiotropic immunomodulatory protein, in post-mortem brain tissue across multiple regions from HIV-infected and HIV-uninfected donors to determine causal associations with HIV brain injury. We demonstrate that the staining intensity, total staining area, and cell-associated frequency of Gal-9 were elevated, principally in the frontal lobe and basal ganglia. Higher frontal lobe Gal-9 levels correlated with lower pre-mortem neuropsychological performance test scores in areas of attention and motor skills. Our results suggest that Gal-9 activity across the brain plays a role in neuroHIV pathogenesis and constitutes a promising disease-modifying target.
Subject(s)
Galectins , HIV Infections , Humans , Brain , HIV Infections/complications , CognitionABSTRACT
Cx3cr1+ monocyte-derived macrophages (moMacs) are recruited to tissues after injury and are known to have profibrotic effects, but the cell-cell interactions and specific pathways that regulate this polarization and function are incompletely understood. Here we investigate the role of moMac-derived Pdgfa in bleomycin-induced lung fibrosis in mice. Deletion of Pdgfa with Cx3cr1-CreERT2 decreased bleomycin-induced lung fibrosis. Among a panel of in vitro macrophage polarizing stimuli, robust induction of Pdgfa was noted with IL10 in both mouse and human moMacs. Likewise, analysis of single-cell data revealed high expression of the receptor IL10RA in moMacs from human fibrotic lungs. Studies with IL10-GFP mice revealed that IL10-expressing cells were increased after injury in mice and colocalized with moMacs. Notably, deletion of IL10ra with Csf1r-Cre: IL10ra fl/fl mice decreased both Pdgfa expression in moMacs and lung fibrosis. Taken together, these findings reveal a novel, IL10-dependent mechanism of macrophage polarization leading to fibroblast activation after injury.
Subject(s)
Interleukin-10/metabolism , Lung Injury , Pulmonary Fibrosis , Animals , Bleomycin/pharmacology , Interleukin-10/genetics , Lung/metabolism , Lung Injury/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolismABSTRACT
The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group ("thiol drugs") may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection, but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with intraperitoneal delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury, and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.
Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cysteamine/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , Pharmaceutical Preparations , SARS-CoV-2 , Sulfhydryl Compounds/pharmacologyABSTRACT
An ability to activate latent HIV-1 expression could benefit many HIV cure strategies, but the first generation of latency reversing agents (LRAs) has proven disappointing. We evaluated AKT/mTOR activators as a potential new class of LRAs. Two glycogen synthase kinase-3 inhibitors (GSK-3i's), SB-216763 and tideglusib (the latter already in phase II clinical trials) that activate AKT/mTOR signaling were tested. These GSK-3i's reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy (ART) in the absence of T cell activation, release of inflammatory cytokines, cell toxicity, or impaired effector function of cytotoxic T lymphocytes or NK cells. However, when administered in vivo to SIV-infected rhesus macaques on suppressive ART, tideglusib exhibited poor pharmacodynamic properties and resulted in no clear evidence of significant SIV latency reversal. Whether alternative pharmacological formulations or combinations of this drug with other classes of LRAs will lead to an effective in vivo latency-reversing strategy remains to be determined.IMPORTANCE If combined with immune therapeutics, latency reversing agents (LRAs) have the potential to reduce the size of the reservoir sufficiently that an engineered immune response can control the virus in the absence of antiretroviral therapy. We have identified a new class of LRAs that do not induce T-cell activation and that are able to potentiate, rather than inhibit, CD8+ T and NK cell cytotoxic effector functions. This new class of LRAs corresponds to inhibitors of glycogen synthase kinase-3. In this work, we have also studied the effects of one member of this drug class, tideglusib, in SIV-infected rhesus monkeys. When tested in vivo, however, tideglusib showed unfavorable pharmacokinetic properties, which resulted in lack of SIV latency reversal. The disconnect between our ex vivo and in vivo results highlights the importance of developing next generation LRAs with pharmacological properties that allow systemic drug delivery in relevant anatomical compartments harboring latent reservoirs.
ABSTRACT
On October 29, 2021, the Pfizer-BioNTech pediatric COVID-19 vaccine received Emergency Use Authorization for children aged 5-11 years in the United States. For a successful immunization program, both access to and uptake of the vaccine are needed. Fifteen million doses were initially made available to pediatric providers to ensure the broadest possible access for the estimated 28 million eligible children aged 5-11 years, especially those in high social vulnerability index (SVI)§ communities. Initial supply was strategically distributed to maximize vaccination opportunities for U.S. children aged 5-11 years. COVID-19 vaccination coverage among persons aged 12-17 years has lagged (1), and vaccine confidence has been identified as a concern among parents and caregivers (2). Therefore, COVID-19 provider access and early vaccination coverage among children aged 5-11 years in high and low SVI communities were examined during November 1, 2021-January 18, 2022. As of November 29, 2021 (4 weeks after program launch), 38,732 providers were enrolled, and 92% of U.S. children aged 5-11 years lived within 5 miles of an active provider. As of January 18, 2022 (11 weeks after program launch), 39,786 providers had administered 13.3 million doses. First dose coverage at 4 weeks after launch was 15.0% (10.5% and 17.5% in high and low SVI areas, respectively; rate ratio [RR] = 0.68; 95% CI = 0.60-0.78), and at 11 weeks was 27.7% (21.2% and 29.0% in high and low SVI areas, respectively; RR = 0.76; 95% CI = 0.68-0.84). Overall series completion at 11 weeks after launch was 19.1% (13.7% and 21.7% in high and low SVI areas, respectively; RR = 0.67; 95% CI = 0.58-0.77). Pharmacies administered 46.4% of doses to this age group, including 48.7% of doses in high SVI areas and 44.4% in low SVI areas. Although COVID-19 vaccination coverage rates were low, particularly in high SVI areas, first dose coverage improved over time. Additional outreach is critical, especially in high SVI areas, to improve vaccine confidence and increase coverage rates among children aged 5-11 years.
Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Programs , Vaccination Coverage , Child , Child, Preschool , Humans , Neighborhood Characteristics , Pharmacies/statistics & numerical data , SARS-CoV-2/immunology , Social VulnerabilityABSTRACT
The continuing spread of HIV/AIDS is predominantly fueled by sexual exposure to HIV-contaminated semen. Seminal plasma (SP), the liquid portion of semen, harbors a variety of factors that may favor HIV transmission by facilitating viral entry into host cells, eliciting the production of proinflammatory cytokines, and enhancing the translocation of HIV across the genital epithelium. One important and abundant class of factors in SP is extracellular vesicles (EVs), which, in general, are important intercellular signal transducers. Although numerous studies have characterized blood plasma-derived EVs from both uninfected and HIV-infected individuals, little is known about the properties of EVs from the semen of HIV-infected individuals. We report here that fractionated SP enriched for EVs from HIV-infected men induces potent transcriptional responses in epithelial and stromal cells that interface with the luminal contents of the female reproductive tract. Semen EV fractions from acutely infected individuals induced a more proinflammatory signature than those from uninfected individuals. This was not associated with any observable differences in the surface phenotypes of the vesicles. However, microRNA (miRNA) expression profiling analysis revealed that EV fractions from infected individuals exhibit a broader and more diverse profile than those from uninfected individuals. Taken together, our data suggest that SP EVs from HIV-infected individuals exhibit unique miRNA signatures and exert potent proinflammatory transcriptional changes in cells of the female reproductive tract, which may facilitate HIV transmission.IMPORTANCE Seminal plasma (SP), the major vehicle for HIV, can modulate HIV transmission risk through a variety of mechanisms. Extracellular vesicles (EVs) are extremely abundant in semen, and because they play a key role in intercellular communication pathways and immune regulation, they may impact the likelihood of HIV transmission. However, little is known about the properties and signaling effects of SP-derived EVs in the context of HIV transmission. Here, we conduct a phenotypic, transcriptomic, and functional characterization of SP and SP-derived EVs from uninfected and HIV-infected men. We find that both SP and its associated EVs elicit potent proinflammatory transcriptional responses in cells that line the genital tract. EVs from HIV-infected men exhibit a more diverse repertoire of miRNAs than EVs from uninfected men. Our findings suggest that EVs from the semen of HIV-infected men may significantly impact the likelihood of HIV transmission through multiple mechanisms.
Subject(s)
Extracellular Vesicles/genetics , MicroRNAs/genetics , Semen/metabolism , Adult , Cohort Studies , Cytokines/metabolism , Extracellular Vesicles/metabolism , Female , Genitalia, Female , HIV Infections/immunology , HIV-1/physiology , Humans , Male , Sexual Behavior , Transcriptome/geneticsABSTRACT
The establishment of HIV-1 latency gives rise to persistent chronic infection that requires life-long treatment. To reverse latency for viral eradiation, the HIV-1 Tat protein and its associated ELL2-containing Super Elongation Complexes (ELL2-SECs) are essential to activate HIV-1 transcription. Despite efforts to identify effective latency-reversing agents (LRA), avenues for exposing latent HIV-1 remain inadequate, prompting the need to identify novel LRA targets. Here, by conducting a CRISPR interference-based screen to reiteratively enrich loss-of-function genotypes that increase HIV-1 transcription in latently infected CD4+ T cells, we have discovered a key role of the proteasome in maintaining viral latency. Downregulating or inhibiting the proteasome promotes Tat-transactivation in cell line models. Furthermore, the FDA-approved proteasome inhibitors bortezomib and carfilzomib strongly synergize with existing LRAs to reactivate HIV-1 in CD4+ T cells from antiretroviral therapy-suppressed individuals without inducing cell activation or proliferation. Mechanistically, downregulating/inhibiting the proteasome elevates the levels of ELL2 and ELL2-SECs to enable Tat-transactivation, indicating the proteasome-ELL2 axis as a key regulator of HIV-1 latency and promising target for therapeutic intervention.
Subject(s)
HIV-1/metabolism , Proteasome Endopeptidase Complex/metabolism , Virus Latency/drug effects , Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/metabolism , CRISPR-Cas Systems , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , HIV Infections/drug therapy , HIV Infections/metabolism , HIV Seropositivity , HIV-1/pathogenicity , Humans , Jurkat Cells , Proteasome Endopeptidase Complex/physiology , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , Transcriptional Elongation Factors , Virus Activation/drug effects , Virus Latency/physiologyABSTRACT
A critical barrier to the development of a human immunodeficiency virus (HIV) cure is the lack of a scalable animal model that enables robust evaluation of eradication approaches prior to testing in humans. We established a humanized mouse model of latent HIV infection by transplanting "J-Lat" cells, Jurkat cells harboring a latent HIV provirus encoding an enhanced green fluorescent protein (GFP) reporter, into irradiated adult NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ (NSG) mice. J-Lat cells exhibited successful engraftment in several tissues including spleen, bone barrow, peripheral blood, and lung, in line with the diverse natural tissue tropism of HIV. Administration of tumor necrosis factor (TNF)-α, an established HIV latency reversal agent, significantly induced GFP expression in engrafted cells across tissues, reflecting viral reactivation. These data suggest that our murine latency ("µ-Lat") model enables efficient determination of how effectively viral eradication agents, including latency reversal agents, penetrate, and function in diverse anatomical sites harboring HIV in vivo.
Subject(s)
Cell Transplantation/methods , Disease Models, Animal , HIV Infections/virology , HIV/physiology , Virus Latency , Animals , Bone Marrow/virology , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HIV/genetics , HIV/pathogenicity , HIV Infections/pathology , HIV Infections/therapy , Humans , Jurkat Cells , Lung/virology , Male , Mice , Mice, Inbred NOD , Proviruses/genetics , Spleen/virology , Transfection/methodsABSTRACT
Population-based analyses of COVID-19 data, by race and ethnicity can identify and monitor disparities in COVID-19 outcomes and vaccination coverage. CDC recommends that information about race and ethnicity be collected to identify disparities and ensure equitable access to protective measures such as vaccines; however, this information is often missing in COVID-19 data reported to CDC. Baseline data collection requirements of the Office of Management and Budget's Standards for the Classification of Federal Data on Race and Ethnicity (Statistical Policy Directive No. 15) include two ethnicity categories and a minimum of five race categories (1). Using available COVID-19 case and vaccination data, CDC compared the current method for grouping persons by race and ethnicity, which prioritizes ethnicity (in alignment with the policy directive), with two alternative methods (methods A and B) that used race information when ethnicity information was missing. Method A assumed non-Hispanic ethnicity when ethnicity data were unknown or missing and used the same population groupings (denominators) for rate calculations as the current method (Hispanic persons for the Hispanic group and race category and non-Hispanic persons for the different racial groups). Method B grouped persons into ethnicity and race categories that are not mutually exclusive, unlike the current method and method A. Denominators for rate calculations using method B were Hispanic persons for the Hispanic group and persons of Hispanic or non-Hispanic ethnicity for the different racial groups. Compared with the current method, the alternative methods resulted in higher counts of COVID-19 cases and fully vaccinated persons across race categories (American Indian or Alaska Native [AI/AN], Asian, Black or African American [Black], Native Hawaiian or Other Pacific Islander [NH/PI], and White persons). When method B was used, the largest relative increase in cases (58.5%) was among AI/AN persons and the largest relative increase in the number of those fully vaccinated persons was among NH/PI persons (51.6%). Compared with the current method, method A resulted in higher cumulative incidence and vaccination coverage rates for the five racial groups. Method B resulted in decreasing cumulative incidence rates for two groups (AI/AN and NH/PI persons) and decreasing cumulative vaccination coverage rates for AI/AN persons. The rate ratio for having a case of COVID-19 by racial and ethnic group compared with that for White persons varied by method but was <1 for Asian persons and >1 for other groups across all three methods. The likelihood of being fully vaccinated was highest among NH/PI persons across all three methods. This analysis demonstrates that alternative methods for analyzing race and ethnicity data when data are incomplete can lead to different conclusions about disparities. These methods have limitations, however, and warrant further examination of potential bias and consultation with experts to identify additional methods for analyzing and tracking disparities when race and ethnicity data are incomplete.
Subject(s)
COVID-19/ethnology , Data Analysis , Ethnicity/statistics & numerical data , Racial Groups/statistics & numerical data , Bias , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , Data Collection/standards , Health Status Disparities , Healthcare Disparities/ethnology , Humans , Treatment Outcome , United States/epidemiology , Vaccination Coverage/statistics & numerical dataABSTRACT
We describe the contact investigation for an early confirmed case of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in the United States. Contacts of the case-patient were identified, actively monitored for symptoms, interviewed for a detailed exposure history, and tested for SARS-CoV-2 infection by real-time reverse transcription PCR (rRT-PCR) and ELISA. Fifty contacts were identified and 38 (76%) were interviewed, of whom 11 (29%) reported unprotected face-to-face interaction with the case-patient. Thirty-seven (74%) had respiratory specimens tested by rRT-PCR, and all tested negative. Twenty-three (46%) had ELISA performed on serum samples collected ≈6 weeks after exposure, and none had detectable antibodies to SARS-CoV-2. Among contacts who were tested, no secondary transmission was identified in this investigation, despite unprotected close interactions with the infectious case-patient.
Subject(s)
Betacoronavirus/pathogenicity , Contact Tracing/statistics & numerical data , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pneumonia, Viral/diagnosis , Public Health/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Travel , Washington/epidemiologyABSTRACT
HIV establishes a reservoir in latently infected T cells, and this reservoir has long hampered curative approaches. A recent study by Descours et al. identifies CD32a as a marker of latently infected T cells, potentially opening the way to the development of strategies that directly target this critical HIV reservoir.
Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Receptors, IgG/genetics , Virus Latency , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/immunology , Gene Expression , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/therapy , HIV-1/pathogenicity , Humans , Molecular Targeted Therapy , RNA, Viral/genetics , RNA, Viral/immunology , Receptors, IgG/immunology , Virus ActivationABSTRACT
Tailoring communicable disease preparedness and response strategies to unique population movement patterns between an outbreak area and neighboring countries can help limit the international spread of disease. Global recognition of the value of addressing community connectivity in preparedness and response, through field work and visualizing the identified movement patterns, is reflected in the World Health Organization's declaration on July 17, 2019, that the 10th Ebola virus disease (Ebola) outbreak in the Democratic Republic of the Congo (DRC) was a Public Health Emergency of International Concern (1). In March 2019, the Infectious Diseases Institute (IDI), Uganda, in collaboration with the Ministry of Health (MOH) Uganda and CDC, had previously identified areas at increased risk for Ebola importation by facilitating community engagement with participatory mapping to characterize cross-border population connectivity patterns. Multisectoral participants identified 31 locations and associated movement pathways with high levels of connectivity to the Ebola outbreak areas. They described a major shift in the movement pattern between Goma (DRC) and Kisoro (Uganda), mainly through Rwanda, when Rwanda closed the Cyanika ground crossing with Uganda. This closure led some travelers to use a potentially less secure route within DRC. District and national leadership used these results to bolster preparedness at identified points of entry and health care facilities and prioritized locations at high risk further into Uganda, especially markets and transportation hubs, for enhanced preparedness. Strategies to forecast, identify, and rapidly respond to the international spread of disease require adapting to complex, dynamic, multisectoral cross-border population movement, which can be influenced by border control and public health measures of neighboring countries.
Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola/epidemiology , Human Migration/statistics & numerical data , Community Participation , Democratic Republic of the Congo/epidemiology , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/prevention & control , Humans , Rwanda/epidemiology , Uganda/epidemiologyABSTRACT
We previously reported that galectin-9 (Gal-9), a soluble lectin with immunomodulatory properties, is elevated in plasma during HIV infection and induces HIV transcription. The link between Gal-9 and compromised neuronal function is becoming increasingly evident; however, the association with neuroHIV remains unknown. We measured Gal-9 levels by ELISA in cerebrospinal fluid (CSF) and plasma of 70 HIV-infected (HIV+) adults stratified by age (older > 40 years and younger < 40 years) either ART suppressed or with detectable CSF HIV RNA, including a subgroup with cognitive assessments, and 18 HIV uninfected (HIV-) controls. Gal-9 tissue expression was compared in necropsy brain specimens from HIV- and HIV+ donors using gene datasets and immunohistochemistry. Among older HIV+ adults, CSF Gal-9 was elevated in the ART suppressed and CSF viremic groups compared to controls, whereas in the younger group, Gal-9 levels were elevated only in the CSF viremic group (p < 0.05). CSF Gal-9 positively correlated with age in all groups (p < 0.05). CSF Gal-9 tracked with CSF HIV RNA irrespective of age (ß = 0.33; p < 0.05). Higher CSF Gal-9 in the older viremic HIV+ group correlated with worse neuropsychological test performance scores independently of age and CSF HIV RNA (p < 0.05). Furthermore, CSF Gal-9 directly correlated with myeloid activation (CSF-soluble CD163 and neopterin) in both HIV+ older groups (p < 0.05). Among HIV+ necropsy specimens, Gal-9 expression was increased in select brain regions compared to controls (p < 0.05). Gal-9 may serve as a novel neuroimmuno-modulatory protein that is involved in driving cognitive deficits in those aging with HIV and may be valuable in tracking cognitive abnormalities.
Subject(s)
Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Central Nervous System/virology , Galectins/genetics , HIV Infections/virology , RNA, Viral/genetics , Receptors, Cell Surface/genetics , Viremia/virology , Adult , Age Factors , Anti-HIV Agents/therapeutic use , Antigens, CD/cerebrospinal fluid , Antigens, Differentiation, Myelomonocytic/cerebrospinal fluid , Antiretroviral Therapy, Highly Active , Biomarkers/cerebrospinal fluid , Case-Control Studies , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/physiopathology , Cognition/drug effects , Cognition/physiology , Female , Galectins/cerebrospinal fluid , HIV Infections/cerebrospinal fluid , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Male , Middle Aged , Neopterin/cerebrospinal fluid , Neuropsychological Tests , RNA, Viral/cerebrospinal fluid , Viremia/cerebrospinal fluid , Viremia/drug therapy , Viremia/immunologyABSTRACT
A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4+ T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4+ T cells, and individually SDF-1ß, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1ß, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4+ T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies.IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4+ T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells.
Subject(s)
Cytokines/metabolism , HIV Infections/immunology , HIV/immunology , HIV/physiology , Virus Replication/drug effects , Adult , Antigens, Differentiation/biosynthesis , CD4-Positive T-Lymphocytes/virology , Female , Gene Expression Regulation , HIV Long-Term Survivors , Humans , Membrane Proteins/biosynthesis , Middle Aged , Plasma/chemistry , Receptors, HIV/biosynthesisABSTRACT
Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.
Subject(s)
CD4-Positive T-Lymphocytes/virology , Galectins/metabolism , HIV Infections/metabolism , Virus Activation/physiology , Virus Latency/physiology , Anti-HIV Agents/therapeutic use , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression Profiling , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/physiology , Humans , Polymerase Chain Reaction , Transcription, Genetic/physiology , TranscriptomeABSTRACT
One of the major barriers to the successful design and implementation of human immunodeficiency virus (HIV) curative strategies is the limited ability to sensitively, specifically, and precisely quantify and characterize the whole-body burden of replication-competent HIV in individuals on effective antiretroviral therapy. Here, we review the development and validation of assays that directly and indirectly measure the size and distribution of the reservoir in blood and tissues. We also discuss the role that treatment interruptions will have in validating these assays and ultimately as a "proof of cure."
Subject(s)
HIV Infections/virology , HIV/physiology , Viral Load , Virus Latency , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HumansABSTRACT
Background: Human immunodeficiency virus (HIV) antibodies are generated and maintained by ongoing systemic expression of HIV antigen. We investigated whether HIV antibody responses as measured by high-throughput quantitative and qualitative assays could be used to indirectly measure persistent HIV replication in individuals receiving antiretroviral therapy (ART). Methods: HIV antibody responses were measured over time in the presence or absence of suppressive ART and were compared to the HIV reservoir size and expression of antiviral restriction factors. Results: Among untreated individuals, including both elite controllers (ie, persons with a viral load of ≤40 copies/mL) and noncontrollers, antibody parameters were stable over time and correlated with the individual viral load. Viral suppression with ART led to a progressive decline in antibody responses after treatment induction that persisted for 5-7 years. Higher levels of HIV antibodies during suppressive therapy were associated with later initiation of ART after infection, with higher DNA and cell-associated RNA levels, and with lower expression of multiple anti-HIV host restriction factors. Discussion: These findings suggest that declining antibody levels during ART reflect lower levels of antigen production and/or viral replication in the persistent HIV reservoir. Results of relatively inexpensive and quantitative HIV antibody assays may be useful indirect markers that enable efficient monitoring of the viral reservoir and suppression during functional-cure interventions.