Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Drug Dev Ind Pharm ; 47(6): 857-866, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33650446

ABSTRACT

OBJECTIVE: This study was aimed at improving the water solubility and oral bioavailability of Chl by self-microemulsifying drug delivery system (Chl-SMEDDS). METHODS: Compatibility experiments, pseudo-ternary phase diagram and central composite design were used to optimize the formulation. The selected systems were further evaluated for physical characteristics, including particle size, zeta potential, and appearance. The stability, in vitro dispersion test, and in vivo intestinal perfusion experiments were used to evaluate the SMEDDS. RESULTS: The optimal composition of Chl-SMEDDS included: Labrafil M 1944 CS (35%), kolliphor RH 40 (46%), Transcutol HP (19%) and 60 mg/g Chl. The appearance of water emulsified Chl-SMEDDS was green and transparent. The particle size, ζ-potential, and transmission electron microscopy studies showed that spherical globules of Chl-SMEDDS with a size of about 22.82 ± 1.29 nm and a negative surface charge of -24.21 ± 3.45 mV were obtained. Chl-SMEDDS could remain stable at 25 °C and 4 °C for at least 6 months. The dispersion test showed that Chl-SMEDDS dispersed spontaneously to form microemulsion after disintegration of capsule shell and 90% drug dispersed in just 30 min in pH 1.2 HCl without any drug precipitation during the test period. In vivo intestinal perfusion experiment revealed that the main absorption site for Chl-SMEDDS was duodenum. CONCLUSIONS: This study indicates that SMEDDS formulation could be an effective strategy for the oral administration of Chl.


Subject(s)
Chlorophyll , Drug Delivery Systems , Administration, Oral , Animals , Biological Availability , Emulsions , Particle Size , Rats , Rats, Sprague-Dawley , Solubility , Surface-Active Agents
2.
Zhongguo Zhong Yao Za Zhi ; 46(10): 2443-2448, 2021 May.
Article in Zh | MEDLINE | ID: mdl-34047088

ABSTRACT

The research on the pharmacodynamic substance basis of traditional Chinese medicine(TCM) is a key scientific issue for the inheritance and development of TCM. At present, a large number of remarkable achievements have been made in the field of chemical components in Chinese medicine, however, another important aspect, namely the physical structure and mode of action of the multi-component assembly of TCM, has not been clearly understood and deeply studied. From the bottleneck of restricting material ba-sic research, we objectively analyzed the common cause of the existing problems. Based on the new discoveries and advances of active substances from TCM emerging in recent years, we extracted and summarized the concept of structural Chinese medicine, elaborated the basic ideas, main features and research modes, hoping to provide theoretical and practical references for the study on the pharmacodynamic substance basis and other research fields of TCM.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology
3.
Nano Lett ; 19(3): 1479-1487, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30707035

ABSTRACT

Combination therapy is a common clinical practice in the management of malignancies. Synergistic therapeutic outcomes are achieved only when tumor cells are exposed to drugs in an optimal ratio and sequence; therefore, carriers coencapsulating multiple drugs are widely pursued for their coordinated delivery. However, it is challenging to coload drugs with different physicochemical properties in a single carrier with specific ratios. It is not even beneficial to load them in one carrier if they need to be released at different times. We propose to load drugs into chemically compatible carriers separately, equalize different carriers by a simple, rapid, and versatile camouflage technique based on natural polyphenol tannic acid (TA), and administer them in desirable ratios and sequences. To demonstrate this potential, different nanoparticles (NPs) with different charges and material basis, such as polymeric (carboxyl-terminated or amine-terminated cationic polystyrene NPs or poly(lactic- co-glycolic acid (PLGA) NPs), inorganic (mesoporous silica NPs (MSNs)), and liposomal NPs, are camouflaged with TA layers and further modified with folate-conjugated polyethylene glycol to aid in the delivery to tumors. The camouflaged NPs show similar physicochemical properties and interactions with KB cells despite the difference in core platforms, and their mixtures interact with common cell targets in a ratiometric manner. In KB-tumor-bearing mice, the camouflaged PLGA NPs and MSNs show near-perfect colocalization in tumors. These results support that TA helps equalize different NPs with high versatility and enables their ratiometric delivery to common targets. This approach can relieve technical challenges in ratiometric codelivery or sequential delivery of therapeutic agents with distinct physicochemical properties.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Polymers/chemistry , Polyphenols/chemistry , Cations/chemistry , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/therapeutic use , Humans , Lactic Acid/chemistry , Liposomes/chemistry , Liposomes/therapeutic use , Nanoparticles/therapeutic use , Polyethylene Glycols/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/therapeutic use , Polymers/therapeutic use , Polyphenols/therapeutic use , Silicon Dioxide/chemistry , Tannins/chemistry
4.
Mol Pharm ; 14(4): 1082-1094, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28191959

ABSTRACT

Mitoxantrone (MTO) is a potent drug used to treat breast cancer; however, efforts to expand its clinical applicability have been restricted because of its high risk for cardiotoxicity. In this study, we successfully conjugated MTO or folic acid (FA) to a synthesized D-α-tocopheryl polyethylene glycol 2000 succinate (TPGS2k), herein, shortened to MCT and FCT, respectively. The two produced conjugates could self-assemble to form MCT micelles or MCT/FCT mixed micelles (FMCT) aiming to lower systemic toxicity, enhance entrapment efficiency, and provide a platform for targeted delivery. Moreover, these micellar materials showed a significantly low CMC and could be used to load MTO. The diameters of MTO-loaded micelles (MTO-MCT and MTO-FMCT) were less than 100 nm with a negative zeta potential. We further characterized the pH-responsive drug release of MTO-MCT and MTO-FMCT and then assessed their cellular uptake and antitumor efficacy in human breast cancer cell lines (MCF-7) via confocal microscopy, flow cytometry, and cytotoxicity studies. All the results revealed that both MTO-MCT and MTO-FMCT increased drug loading and entrapment efficiency and possessed sufficient pH-sensitive release. Additionally, MTO-FMCT displayed an improved uptake through folate-mediated endocytosis, resulting in a higher cytotoxic effect on MCF-7 cells compared with that of MTO-MCT. Meanwhile, both MTO-MCT and MTO-FMCT exhibited a low toxicity on hCMEC/D3 normal cells. More importantly, pharmacokinetic study demonstrated that, in comparison with free MTO injection, MTO-MCT and MTO-FMCT, respectively, achieved half-lives 11.5 and 13 times longer and a 9.7- and 5.8-fold increase in AUC. In vivo, both MTO-MCT and MTO-FMCT formulations significantly prolonged the survival time of MCF-7 tumor-bearing mice and had a better efficacy/toxicity ratio. Promisingly, MTO-FMCT micelles remarkably increased MTO accumulation in tumors in vivo, induced higher tumor cell apoptosis, and showed lower toxicity toward major organs. These results imply that MTO-FMCT may be used as a potential drug delivery system for breast cancer targeted therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Folic Acid/administration & dosage , Mitoxantrone/administration & dosage , Vitamin E/administration & dosage , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation/physiology , Female , Humans , MCF-7 Cells , Male , Mice , Mice, Nude , Micelles , Rats , Rats, Sprague-Dawley
5.
Drug Dev Ind Pharm ; 43(10): 1637-1647, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28481657

ABSTRACT

The article describes the preparation, physicochemical characterization, drug release, and in vivo behavior of 10-hydroxycamptothecin-loaded poly (n-butyl cyanoacrylate) (PBCA) nanospheres (HCPT-PBCA-NSs). HCPT-PBCA-NSs were successfully prepared via emulsion polymerization of n-butyl cyanoacrylate (BCA) monomer in acidic medium with the aid of two colloidal stabilizers (Poloxamer 188 and Dextran 70). The influence of pH, the time of polymerization, and the dosage of the drug on particle size and encapsulation efficiency (EE) were studied. HCPT-PBCA-NSs were of spherical shape and uniformly dispersed with a particle size of 135.7 nm, and zeta potential of -18.18 mV. EE, drug loading (DL), and yield of HCPT-PBCA-NSs were 51.52, 0.63, and 88.25%, respectively. FTIR, 1H NMR, and DSC showed complete polymerization of BCA monomer and HCPT existed in the form of molecular or amorphous in NSs. In vitro release of the drug from HCPT-PBCA-NSs exhibited sustained-release behavior with an initial burst release and about 60% of HCPT was released from the formulation within 24 h of dialysis. The pharmacokinetic study in healthy rats after oral administration showed that encapsulation of HCPT into PBCA-NSs increased the Cmax about 3.84 times and increased AUC0-t about 5.40 times compared with that of HCPT suspension. It was concluded that PBCA-NSs could be a promising drug carrier to load HCPT for oral drug delivery if efforts are made in the future to improve its poor DL capacity.


Subject(s)
Camptothecin/analogs & derivatives , Drug Delivery Systems/methods , Enbucrilate/chemistry , Nanoparticles/chemistry , Nanospheres/chemistry , Poloxamer/chemistry , Animals , Biological Availability , Camptothecin/administration & dosage , Camptothecin/chemistry , Chemistry, Pharmaceutical , Drug Carriers , Emulsions , Enbucrilate/administration & dosage , Particle Size , Rats
6.
Biol Res ; 49(1): 32, 2016 Jul 04.
Article in English | MEDLINE | ID: mdl-27378167

ABSTRACT

BACKGROUND: Chitosan, the N-deacetylated derivative of chitin, is a cationic polyelectrolyte due to the presence of amino groups, one of the few occurring in nature. The use of chitosan in protein and drug delivery systems is being actively researched and reported in the literature. RESULTS: In this study, we used chitosan-coated levodopa liposomes to investigate the behavioral character and the expression of phosphorylated extracellular signal-regulated kinase (ERK1/2), dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and FosB/ΔFosB in striatum of rat model of levodopa-induced dyskinesia (LID). We found that scores of abnormal involuntary movement (AIM) decreased significantly in liposome group (P < 0.05), compared with levodopa group. Levels of phospho-ERK1/2, phospho-Thr34 DARPP-32 and FosB/ΔFosB in striatum decreased significantly in liposome group lesion side compared with levodopa group (P < 0.05). However, both of two groups above have significantly differences compared with the control group (P < 0.05). CONCLUSION: Chitosan-coated levodopa liposomes may be useful in reducing dyskinesias inducing for Parkinson disease. The mechanism might be involved the pathway of signaling molecular phospho-ERK1/2, phospho-Thr34 DARPP-32 and ΔFosB in striatum.


Subject(s)
Chitosan/pharmacology , Dopamine Agents/pharmacology , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Dyskinesia, Drug-Induced/metabolism , Dyskinesia, Drug-Induced/prevention & control , Levodopa/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Animals , Biocompatible Materials/pharmacology , Blotting, Western , Corpus Striatum/drug effects , Dopamine and cAMP-Regulated Phosphoprotein 32/analysis , Dopamine and cAMP-Regulated Phosphoprotein 32/drug effects , Dyskinesia, Drug-Induced/etiology , Extracellular Signal-Regulated MAP Kinases/analysis , Extracellular Signal-Regulated MAP Kinases/drug effects , Immunohistochemistry , Liposomes , MAP Kinase Signaling System , Male , Nanoparticles , Parkinson Disease/drug therapy , Phosphorylation/drug effects , Proto-Oncogene Proteins c-fos/analysis , Proto-Oncogene Proteins c-fos/drug effects , Random Allocation , Rats, Sprague-Dawley , Reproducibility of Results , Treatment Outcome
7.
J Am Chem Soc ; 137(18): 6000-10, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25869911

ABSTRACT

A novel "collaborative assembly" approach was reported for the synthesis of an siRNA delivery system via a combination of an electrostatically driven physical assembly and a facile click reaction-mediated chemical assembly, which showed various advantages of more safety, efficiency, and flexibility over the conventional approach that is only based on the physical assembly. This strategy remained a high cationic property of lipid-based complex for high siRNA loading capacity. The direct chemical modification of a model polyanion, hyaluronic acid (HA) on the cationic complex via click chemistry shielded the positive charge of complex without affecting the siRNA binding, which reduced the toxicity and enhanced the blood stability of the complex. In addition, the incorporated polyanion might be prefunctionalized, which endued the carrier with better biological characteristics such as long circulating or tumor targeting. We demonstrated that the obtained lipid-polymer hybrid nanoparticle (RSC-HA) using collaborative assembly presented greater in vivo stability in the blood for efficient tumor targeting than the physically assembled RSC/HA in which HA was physically adsorbed on the complex. After endocytosis into the cells, the protection of RSC-HA on siRNA turned off, while the release of siRNA induced by the intracellular signals for enhanced gene-silencing capacity. This combination of physical and chemical assemblies provides an efficient strategy for the exploitation of safe, stable, and functionalized siRNA delivery systems.


Subject(s)
Gene Transfer Techniques , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/metabolism , Animals , Cell Line, Tumor , Gene Silencing/drug effects , Humans , Lipids/chemistry , Mice , Molecular Structure , Nanoparticles/chemistry , Neoplasms, Experimental/pathology , Polymers/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Rats
8.
Mol Pharm ; 11(6): 1823-34, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24779677

ABSTRACT

In this study, a dual-targeting drug delivery system based on bovine serum albumin nanoparticles (BSA-NPs) modified with both lactoferrin (Lf) and mPEG2000 loading doxorubicin (DOX) was designed, and its blood-brain barrier (BBB) penetration and brain glioma cells targeting properties were explored. BSA-NPs were prepared by a desolvation technique, and mPEG2000 was incorporated onto the surface of BSA-NPs by reacting with the free amino-group of BSA to form mPEG2000-modified BSA-NPs (P2000-NPs). Finally, Lf-modified P2000-NPs (Lf-NPs) was obtained by absorbing Lf onto the surface of P2000-NPs via the positive and negative charges interaction at physiological pH. Three levels of mPEG2000 and Lf-modified NPs were prepared and characterized, respectively. The uptake and potential cytotoxicity of different DOX preparations in vitro by the primary brain capillary endothelial cells (BCECs) and glioma cells (C6) were investigated. The dual-targeting effects were studied on the BBB model in vitro, BCECs/C6 glioma coculture model in vitro, and C6 glioma-bearing rats in vivo, respectively. The results exhibited that, with the increase of the amount of both mPEG2000 and Lf, the particle size of NPs increased and its zeta potential decreased. The in vivo pharmacokinetics study in healthy rats exhibited that P2000-NPs with a high level of mPEG2000 (P2000H-NPs) had longer circulation time in vivo. Compared to other NPs, Lf-NPs with high level of both Lf and mPEG2000 (LfH-NPs) showed the strongest cytotoxicity and the highest effectiveness in the uptake both in BCECs and C6 as well as improved the dual-targeting effects. Body distribution of DOX in different formulations revealed that LfH-NPs could significantly increase the accumulation of DOX in the brain, especially at 2 h postinjection (P < 0.05). In conclusion, Lf-NPs were a prospective dual-targeting drug delivery system for effective targeting therapy of brain gliomas.


Subject(s)
Brain Neoplasms/drug therapy , Drug Carriers/administration & dosage , Glioma/drug therapy , Lactoferrin/administration & dosage , Nanoparticles/administration & dosage , Polyethylene Glycols/administration & dosage , Serum Albumin, Bovine/administration & dosage , Animals , Antibiotics, Antineoplastic/administration & dosage , Blood-Brain Barrier/metabolism , Chemistry, Pharmaceutical/methods , Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Endothelial Cells/metabolism , Particle Size , Rats , Rats, Sprague-Dawley , Tissue Distribution/physiology
9.
Yao Xue Xue Bao ; 49(1): 23-9, 2014 Jan.
Article in Zh | MEDLINE | ID: mdl-24783501

ABSTRACT

Lipoproteins are biological lipids carriers. The natural and reconstituted lipoprotein based drug delivery systems have been extensively developed in recent years. This article reviews the development of natural and reconstituted low-density lipoprotein and high-density lipoprotein based vehicles in the antitumor area.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/chemistry , Lipoproteins/administration & dosage , Nanoparticles , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Apolipoproteins B/administration & dosage , Apolipoproteins B/chemistry , Drug Carriers/administration & dosage , Humans , Lipoproteins/chemistry , Lipoproteins, HDL/administration & dosage , Lipoproteins, HDL/chemistry , Lipoproteins, LDL/administration & dosage , Lipoproteins, LDL/chemistry , Peptides/administration & dosage , Peptides/chemistry , Pharmaceutical Vehicles/chemistry
10.
Angew Chem Int Ed Engl ; 53(24): 6253-8, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24740532

ABSTRACT

To achieve deep tumor penetration of large-sized nanoparticles (NPs), we have developed a reversible swelling-shrinking nanogel in response to pH variation for a sequential intra-intercellular NP delivery. The nanogel had a crosslinked polyelectrolyte core, consisting of N-lysinal-N'-succinyl chitosan and poly(N-isopropylacrylamide), and a crosslinked bovine serum albumin shell, which was able to swell in an acidic environment and shrink back under neutral conditions. The swelling resulted in a rapid release of the encapsulated chemotherapeutics in the cancer cells for efficient cytotoxicity. After being liberated from the dead cells, the contractive nanogel could infect neighboring cancer cells closer to the center of the tumor tissue.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Nanoparticles
11.
Mol Pharm ; 10(4): 1378-87, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23339520

ABSTRACT

In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p < 0.01). In hydroxyethyl piperazine ethanesulfonic acid buffer (HEPES) of pH 7.4, except for 7c, 9a, and 9d, P(eff) of the other prodrugs containing 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (1.7-fold) exhibited significantly higher values than that of OA (p < 0.01). In inhibition studies with glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1), P(eff) of 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (2.3-fold) had significantly reduced values (p < 0.01). Compared to the apparent permeability coefficient (P(app)) of OA with Caco-2 cell monolayer, significant enhancement of the P(app) of 7a (5.27-fold), 9b (3.31-fold), 9a (2.26-fold), 7b (2.10-fold), 7c (2.03-fold), 9c (1.87-fold), and 9d (1.39-fold) was also observed (p < 0.01). Inhibition studies with Gly-Sar (1 mM) showed that P(app) of 7a, 9b, and 9c significantly reduced by 1.3-fold, 1.6-fold, and 1.4-fold (p < 0.01), respectively. These results may be attributed to PepT1-mediated transport and their differential affinity toward PepT1. According to the permeability and affinity, 7a and 9b were selected in the pharmacokinetic studies in rats. Compared with group OA, C(max) for group 7a and 9b was enhanced to 3.04-fold (p < 0.01) and 2.62-fold (p < 0.01), respectively. AUC(0→24) was improved to 3.55-fold (p < 0.01) and 3.39-fold (p < 0.01), respectively. Compared to the ethylene glycol-linked amino acid diester prodrugs of OA in our previous work, results from this study revealed that part of the propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.


Subject(s)
Amino Acids/chemistry , Dipeptides/chemistry , Intestines/drug effects , Membrane Transport Proteins/metabolism , Oleanolic Acid/chemistry , Prodrugs/chemistry , Propylene Glycol/chemistry , Animals , Biological Availability , Caco-2 Cells , Chromatography, High Pressure Liquid , Drug Design , Drug Evaluation, Preclinical , Humans , Hydrogen-Ion Concentration , Male , Oleanolic Acid/pharmacokinetics , Perfusion , Permeability , Rats , Rats, Sprague-Dawley , Solubility , Water/chemistry
12.
Mol Pharm ; 10(6): 2479-89, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23646913

ABSTRACT

Refractory leukemia remains the most common therapeutic problem in clinical treatment of leukemia. The key therapy of refractory leukemia is to kill, thoroughly, the minimal residual disease and leukemia stem cells in the highly vascularized red marrow areas. In this study, two new conjugates, alendronate-polyethylene glycol (100) monostearate and folate-polyethylene glycol (100) monostearate, were synthesized to develop a multistep targeting nanostructured lipid carriers by enhancing drug transport to the high bone turnover areas adjacent to the red marrow and targeting the minimal residual disease and leukemia stem cells. This dual targeting system demonstrated a great binding affinity to hydroxyapatite, a model component of bone minerals, and higher cell uptake (in the form of carriers but not drug) and cytotoxicity in the K562 cell line, a leukemia cell line with overexpressed folate receptors, were observed in vitro compared to unmodified carriers, especially when the cells were pretreated and the receptors were up-regulated by all-trans retinoic acid. The comodel test of K562 cells and HA showed that this dual targeting system could desorb from bone surface and be taken up by leukemia cells. For the in vivo study, this dual targeting system exhibited a significant increase in plasma half-life and could specifically accumulate in the bone tissue of rats or mice after intravenous injection. Ex vivo imaging of mice femurs and confocal laser scanning microscope imaging of mice femur slices further confirmed that this dual targeting system could favorably deposit to the osteoblast-enriched areas of high bone turnover in regions of trabecular bone surrounded by red marrow. In vivo antitumor activity in K562/BALB/c-nu leukemia mice showed that the treatment of this dual targeting system significantly reduced the white blood cell (WBC) number in peripheral blood and bone marrow to the normal level. In conclusion, this dual targeting system could precisely target to the regions where the minimal residual disease and leukemia stem cells are located and then be specifically uptaken in large amounts, which is a valuable target for refractory leukemia therapy.


Subject(s)
Drug Delivery Systems/methods , Leukemia/drug therapy , Neoplasm, Residual/drug therapy , Neoplastic Stem Cells/drug effects , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Bone Marrow/drug effects , Cell Line, Tumor , Durapatite/chemistry , Folic Acid/analogs & derivatives , Folic Acid/chemistry , Humans , Leukocytes/drug effects , Mice , Mitoxantrone/administration & dosage , Mitoxantrone/therapeutic use , Polyethylene Glycols/chemistry , Rats
13.
Drug Dev Ind Pharm ; 39(5): 724-32, 2013 May.
Article in English | MEDLINE | ID: mdl-22630165

ABSTRACT

In this study, a self-emulsifying pellet (SEP) was prepared in order to improve the bioavailability of bifendate (DDB). First, a liquid self-emulsifying drug delivery system (SEDDS) was formulated, and then further developed into the SEP by extrusion/spheronization technology using the reconstituted emulsion as the adhesive. The optimized liquid SEDDS consisted of Miglycol(®) 840, a mixture of Cremorphor(®) EL and Solutol HS(®) 15 (1:2, w/w), and Transcutol HP as the oil phase, the surfactant and the co-surfactant at a weight ratio of 40:45:15 (w/w/w), respectively. The SEP were prepared using a mixture of MCC, lactose, and mannitol (45:45:10, w/w/w) as solid adsorbents. The SEP with 40% (w/w) of the liquid SEDDS was round-shaped with a uniform size (800-1000 µm). There was no difference in droplet size between the emulsions obtained from the liquid SEDDS or the SEP (169.8 ± 6.3 nm and 163.7 ± 3.8 nm). Compared with that of DDB pills (less than 20%), in vitro release of DDB from the SEP (over 80% within 60 min) was significantly enhanced in 0.1N HCl, although slower than that of the liquid SEDDS (over 80% within 5 min). AUC of DDB of the SEP after oral administration in rats exhibited 2.36-fold greater than that of DDB pills and no significant difference compared with that of the liquid SEDDS. In conclusion, our studies illustrated that extrusion/spheronization technique could be a useful method to prepare this SEP and it could be a promising way for enhancing oral bioavailability of poorly water-soluble drugs.


Subject(s)
Biphenyl Compounds/pharmacokinetics , Drug Delivery Systems , Emulsions/chemistry , Administration, Oral , Analysis of Variance , Animals , Biological Availability , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/chemistry , Chemistry, Pharmaceutical , Drug Implants , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Emulsions/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley
14.
Health Mark Q ; 30(4): 349-61, 2013.
Article in English | MEDLINE | ID: mdl-24308413

ABSTRACT

This research investigates factors influencing Chinese consumers' purchase choice of private-label drugs over rational brand equivalents. Survey data were collected from 251 Chinese consumers. Results show that their purchase choice of private-label drugs is significantly influenced by drug trust and perceptions of drug quality, but is not influenced by private-label drugs' price advantage. Store trust and perceived drug quality are significant predictors of drug trust. Store trust also positively affects perceived drug quality. Finally, store trust is significantly influenced by product quality and service quality.


Subject(s)
Choice Behavior , Drugs, Generic , Adolescent , Adult , Aged , China , Drug Costs , Drugs, Generic/economics , Empirical Research , Female , Humans , Male , Middle Aged , Surveys and Questionnaires , Trust , Young Adult
15.
Mol Pharm ; 9(8): 2127-35, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22352697

ABSTRACT

The purposes of this study were to expand the structure of parent drugs selected for peptide transporter 1 (PepT1)-targeted ester prodrug design and to improve oral bioavailability of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug. Through an ethoxy linker the carboxylic acid group of OA was conjugated with the carboxylic acid group of different amino acid promoieties to form six diester prodrugs. The effective permeability (P(eff)) of prodrugs was screened by in situ rat single-pass intestinal perfusion (SPIP) model in two buffers with different pH (6.0 and 7.4) as PepT1 employs a proton-gradient as the driving force. Compared to OA, 2.5-fold, 2.3-fold, 2.2-fold, 2.1-fold, and 1.9-fold enhancement of P(eff) in buffer with pH 6.0 was observed for L-Phe ester (5c), L-Val ester (5a), L-Lys ester (5e), D-Phe ester (5d), and D-Val ester (5b), respectively. Furthermore, P(eff) of 5a, 5c, 5d and 5e in pH 6.0 was significantly higher than that in pH 7.4 (p < 0.01), respectively. These results showed that the H(+) concentration of perfusion solution had great effect on the transport of the prodrugs across intestinal membrane. For the further evaluation of affinity to PepT1, inhibition studies were performed by coperfusing 0.1 mM prodrug with 50 mM glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1). It turned out that the P(eff) of 5a, 5b, 5c and L-Tyr ester (6f) significantly reduced in the presence of Gly-Sar (1.7-fold, 2.2-fold, 1.9-fold, and 1.4-fold, respectively). We supposed that it may be attributed to PepT1 mediated transport of these prodrugs. 5a and 6f were selected as the optimal target prodrugs for oral absorption in vivo. Following intragastric administration of 300 mg/kg (calculated as OA) 5a, 6f and OA in three groups of rats, compared with group OA, Cmax for the group of 5a and 6f was enhanced by 1.56-fold and 1.54-fold, respectively. Fapp of group 5a and 6f was 2.21- and 2.04-fold increased, respectively, indicating that 5a and 6f had better oral absorption than OA. The combined results also suggest that diester prodrugs which conjugated two carboxylic acid groups of proper amino acid promoieties and parent drug through a linker can be used for PepT1-targeted prodrug design. With this strategy, oral bioavailability of OA in rats could be improved significantly.


Subject(s)
Ethylene Glycol/chemistry , Oleanolic Acid/chemistry , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Animals , Intestinal Absorption , Male , Rats , Rats, Sprague-Dawley , Solubility
16.
Mol Pharm ; 8(5): 1641-51, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21770405

ABSTRACT

A new conjugate, octreotide-polyethylene glycol(100) monostearate (OPMS), was developed for the enhancement of targeting delivery of hydroxycamptothecine (HCPT) loaded in nanostructured lipid carrier (NLC). 2 × 10(-3) and 5 × 10(-3) mmol of OPMS were respectively used to modify NLC so that the targeted nanocarriers with low and high ligand density were obtained. For comparison, the pegylated NLCs without octreotide were prepared by adding equal molar amounts of polyethylene glycol(100) monostearate (PGMS). The relation between the modification levels and properties of various NLCs were studied in vivo and in vitro. At a high modification level, a slower release rate of HCPT and the more stable nanocarriers was achieved. At the same time, the fixed aqueous layer thickness (FALT) and average surface density of PEG chains (SD(PEG)) was increased, but the distance (D) between two neighboring PEG grafting sites became narrower. The in vivo pharmacokinetic study in healthy rat indicated that the modified NLCs had a longer circulation than NLC (P < 0.05) due to pegylation effect and OPMS modified NLCs had larger MRT and AUC(0-t) than that of PGMS modified NLCs at the same modification level. Furthermore, the florescence microscopy observation also showed the targeting effect of octreotide modification on somatostatin receptors (SSTRs) of tumor cell (SMMC-7721). The uptake of SMMC-7721 was much more than that of normal liver cell (L02) for OPMS modified NLC, and the highest uptake was observed for 5 × 10(-3) mmol of OPMS modified one. No obvious difference was found among the L02 uptake of OPMS modified NLCs and NLC, but their uptake was higher than that of PGMS modified NLCs. All the results indicated that the OPMS highly modified NLCs would improve the effect of antitumor therapy by inhibiting the degradation, evading RES and enhancing the drug uptake of tumor cells.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Camptothecin/analogs & derivatives , Drug Carriers/pharmacokinetics , Lipids/chemistry , Nanostructures/chemistry , Octreotide/chemistry , Polyethylene Glycols/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Biological Transport , Camptothecin/administration & dosage , Camptothecin/chemistry , Camptothecin/metabolism , Camptothecin/pharmacokinetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Chemical Phenomena , Delayed-Action Preparations , Drug Carriers/chemistry , Drug Carriers/metabolism , Half-Life , Humans , Ligands , Lipids/adverse effects , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Nanostructures/adverse effects , Nanostructures/ultrastructure , Neoplasm Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Somatostatin/metabolism
17.
J Nanosci Nanotechnol ; 11(10): 8547-55, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22400223

ABSTRACT

To develop an appropriate carrier for intratumoral drug delivery, cetyltrimethylammonium bromide (CTAB) modified nanoemulsome (CTAB-NES) was designed and prepared by solvent evaporation method. Coumarin-6 was chosen as the fluorescent probe and the conventional nanoemulsome (NES) without CTAB modification served as a control. The results demonstrated that CTAB-NES had a smaller particle size of 71.9 +/- 4.32 nm, considerate positive zeta potential of +48.7 +/- 0.2 mV, preferably entrapment efficiency of 97.483 +/- 0.693% and the release of coumarin-6 in 24 h was little. The in vitro cytotoxicity of CTAB-NES to the CHO cells and MCF-7 cells increased consistently with concentrations and was higher than that of NES, especially to the cancer cells. Both the fluorescence microscopy images and HPLC assay verified that the cellular uptake of CTAB-NES in MCF-7 cells was much higher than that of NES, and the uptake was time-, concentration- and temperature- dependent. The uptake mechanism results demonstrated that the internalization of CTAB-NES and NES involved clathrin- and caveolae-mediated endocytosis while macropinocytosis only influenced the uptake of CTAB-NES in MCF-7 cells for CTAB could mediate adsorptive pinocytosis. Thus, CTAB-NES with high positive charge and good intracellular uptake ability could be a promising drug carrier for intratumoral drug delivery.


Subject(s)
Antineoplastic Agents/administration & dosage , Cetrimonium Compounds/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/administration & dosage , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , CHO Cells , Cations/administration & dosage , Cations/chemistry , Cations/pharmacokinetics , Caveolae/metabolism , Cell Line, Tumor , Cells, Cultured , Cetrimonium , Cetrimonium Compounds/administration & dosage , Cetrimonium Compounds/pharmacokinetics , Clathrin/metabolism , Coumarins/administration & dosage , Coumarins/chemistry , Coumarins/pharmacokinetics , Cricetinae , Drug Carriers/administration & dosage , Drug Carriers/pharmacokinetics , Emulsions/administration & dosage , Emulsions/chemistry , Emulsions/pharmacokinetics , Female , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacokinetics , Humans , Microscopy, Fluorescence/methods , Nanoparticles/chemistry , Particle Size , Pinocytosis/drug effects , Polymers/administration & dosage , Polymers/chemistry , Polymers/pharmacokinetics , Solvents/chemistry , Thiazoles/administration & dosage , Thiazoles/chemistry , Thiazoles/pharmacokinetics
18.
Pharmazie ; 66(5): 339-47, 2011 May.
Article in English | MEDLINE | ID: mdl-21699067

ABSTRACT

This study was done to prepare thymopentin (TP5)-loaded poly (butyl cyanoacrylate) nanoparticles (TP5-PBCA-NPs) and evaluate thier efficacy for oral delivery. TP5-PBCA-NPs were prepared by emulsion polymerization, and the formulation was optimized based on Box-Behnken experimental design. The physico-chemical characteristics of TP5-PBCA-NPs were evaluated using transmission electron microscopy (TEM), malvern zetasizer, Fourier transform infra-red spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The encapsulation efficiency, enzymatic degradation and release behavior of TP5-PBCA-NPs in various media were evaluated using a high-performance liquid chromatography (HPLC) method. The pharmacodynamic studies on oral administration of TP5-PBCA-NPs were performed in FACScan flow cytometry. An optimum formulation consisted of 0.7% poloxamer 188 (Pol), 0.6% dextran-70 (Dex), 0.1% sodium metabisulfite (Sm), 0.1% TP5 and 1% (v/v) n-butyl cyanoacrylate. The particle size and zeta potential of optimized TP5-PBCA-NPs was 212 nm and -22.6 mV respectively with 82.45% encapsulation efficiency. TP5 was entrapped inside the nanoparticles in molecular dispersion form. The release of TP5 from PBCA-NPs was pH dependent; the cumulative release percentage in 0.1 M HCI for 4 hours was less than 16% while it was more than 80% in pH6.8 PBS. The PBCA-NPs could efficiently protect TP5 from enzymatic degradation; the remained percentage of TP5 encapsulated in PBCA-NPs was 58.40% after incubated with trypsin in pH6.8 PBS for 4 h while it was only 32.29% for free drug. In the oral administration study in vivo, the lowered T-lymphocyte subsets values were significantly increased and the raised CD4+/CD8+ ratio was evidently reduced compared with that of TP5 solution (p < 0.05), and the improvement of bioavailability was dose-dependent. These results indicated that the PBCA nanoparticles may be a promising carrier for oral delivery of TP5.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacokinetics , Cyanoacrylates/chemistry , Thymopentin/administration & dosage , Thymopentin/pharmacokinetics , Adjuvants, Immunologic/chemistry , Animals , Biological Availability , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Cyclophosphamide/antagonists & inhibitors , Drug Carriers , Drug Design , Electrochemistry , Female , Flow Cytometry , Hydrolysis , Immunity/drug effects , Immunosuppressive Agents/antagonists & inhibitors , Kinetics , Nanoparticles , Particle Size , Rats , Rats, Sprague-Dawley , Solubility , Spectroscopy, Fourier Transform Infrared , T-Lymphocyte Subsets/drug effects , Thymopentin/chemistry
19.
Yao Xue Xue Bao ; 46(8): 997-1003, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22007527

ABSTRACT

In this study, indomethacin (IND) loaded solidified-polymeric micelles (IND-SPM) were prepared. Their in vitro characteristics were investigated. Methoxy-poly(ethylene glycol) poly(D, L-lactide) copolymer (mPEG-PDLLA) was used as IND carrier. The preparation of IND-SPM was conducted by solution-absorption method and evaporation by rotary evaporator. Polyplasdone XL-10 was used as adsorbent. The solution-absorption method was conducted by the following procedure; IND and mPEG-PDLLA were dissolved in acetone, followed by addition of polyplasdone XL-10 and stirred to obtain a suspension. The powder of IND-SPM was simply obtained after the organic solvent was completely evaporated. More than 90% (w/w) of IND (20 mg) in the powder was dissolved in 250 mL PBS within 30 min. DSC, 1H NMR and SEM results proved that IND was encapsulated within mPEG-PDLLA. The solubility of IND in the system increased 4.6 times with the highest amount of copolymer. The solidified particles were found to be suitable for the formulation of tablets or capsules.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Drug Delivery Systems , Indomethacin/administration & dosage , Polyesters/chemistry , Polyethylene Glycols/chemistry , Administration, Oral , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Drug Carriers/chemistry , Drug Compounding , Indomethacin/chemistry , Micelles , Povidone/chemistry , Solubility
20.
Yao Xue Xue Bao ; 46(6): 720-6, 2011 Jun.
Article in Zh | MEDLINE | ID: mdl-21882535

ABSTRACT

This study is to prepare the W/O microemulsion containing NaCl and fluorouracil (5-Fu) as a model drug to investigate the transdermal characteristics and skin irritation of the microemulsion in vitro. Isopropylmyristate (IPM) acting as oil phase, Aerosol-OT (AOT) as surfactant, Tween 85 as cosurfactant, NaCl solution was added dropwise to the oil phase to prepare W/O microemulsion at room temperature using magnetic stirring, and then 5-Fu powder was added. According to the area of microemulsion based on the pseudo-tertiary phase diagrams, the optimum formulation was screened initially. And the permeation flux of fluorouracil across excised mice skin was determined in vitro using Franz diffusion cells to study the influence of the amount of water and the drug loading capacity and optimize the formulation further. Refer to 5-Fu cream, the irritation of microemulsion on the rat skin was studied. The optimum formulation was composed of 0.7% (w/v) 5-Fu, 50% NaCl solution (0.05 mol x L(-1)), 20% mix-surfactant (AOT/Tween 85, K(m) = 2) and 29.3% oil (IPM). The cumulative amount of fluorouracil permeated in 12 h was (2 013.4 +/- 41.6) microg x cm(-2), 20.23 folds and 10.38 folds more than 0.7% fluorouracil aqueous solution and 2.5% (w/w) fluorouracil cream, respectively. Microemulsion exhibited some irritation, but could be reversed after drug withdrawal. The addition of NaCl significantly increased the content of water and the drug loading in microemulsion systems. The NaCl/AOT-Tween 85/IPM microemulsion system promoted the permeation of fluorouracil greatly, which may be a promising vehicle for the transdermal delivery of fluorouracil and other hydrophilic drug.


Subject(s)
Antimetabolites, Antineoplastic/pharmacokinetics , Drug Delivery Systems , Fluorouracil/pharmacokinetics , Skin Absorption , Administration, Cutaneous , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/adverse effects , Dioctyl Sulfosuccinic Acid/chemistry , Drug Carriers , Emulsions , Exanthema/chemically induced , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , In Vitro Techniques , Male , Mice , Myristates/chemistry , Oils/chemistry , Polysorbates/chemistry , Rats , Rats, Sprague-Dawley , Sodium Chloride/chemistry , Surface-Active Agents/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL