Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 31: 285-316, 2013.
Article in English | MEDLINE | ID: mdl-23298209

ABSTRACT

Mesenchymal stem cells (MSCs) are self-renewing precursor cells that can differentiate into bone, fat, cartilage, and stromal cells of the bone marrow. Recent studies suggest that MSCs themselves are critical for forming a niche that maintains hematopoietic stem cells (HSCs). The ease by which human MSC-like and stromal progenitor cells can be isolated from the bone marrow and other tissues has led to the rapid development of clinical investigations exploring their anti-inflammatory properties, tissue preservation capabilities, and regenerative potential. However, the identity of genuine MSCs and their specific contributions to these various beneficial effects have remained enigmatic. In this article, we examine the definition of MSCs and discuss the importance of rigorously characterizing their stem cell activity. We review their role and that of other putative niche constituents in the regulation of bone marrow HSCs. Additionally, how MSCs and their stromal progeny alter immune function is discussed, as well as potential therapeutic implications.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Regenerative Medicine/methods , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation/therapy , Stem Cells/immunology , Stromal Cells/immunology , Stromal Cells/pathology , Stromal Cells/transplantation
2.
Nat Rev Mol Cell Biol ; 20(5): 303-320, 2019 05.
Article in English | MEDLINE | ID: mdl-30745579

ABSTRACT

The haematopoietic stem cell (HSC) microenvironment in the bone marrow, termed the niche, ensures haematopoietic homeostasis by controlling the proliferation, self-renewal, differentiation and migration of HSCs and progenitor cells at steady state and in response to emergencies and injury. Improved methods for HSC isolation, driven by advances in single-cell and molecular technologies, have led to a better understanding of their behaviour, heterogeneity and lineage fate and of the niche cells and signals that regulate their function. Niche regulatory signals can be in the form of cell-bound or secreted factors and other local physical cues. A combination of technological advances in bone marrow imaging and genetic manipulation of crucial regulatory factors has enabled the identification of several candidate cell types regulating the niche, including both non-haematopoietic (for example, perivascular mesenchymal stem and endothelial cells) and HSC-derived (for example, megakaryocytes, macrophages and regulatory T cells), with better topographical understanding of HSC localization in the bone marrow. Here, we review advances in our understanding of HSC regulation by niches during homeostasis, ageing and cancer, and we discuss their implications for the development of therapies to rejuvenate aged HSCs or niches or to disrupt self-reinforcing malignant niches.


Subject(s)
Aging/metabolism , Cell Differentiation , Hematopoietic Stem Cells/metabolism , Homeostasis , Neoplasms/metabolism , Stem Cell Niche , Aging/pathology , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Cellular Senescence , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hematopoietic Stem Cells/pathology , Humans , Neoplasms/pathology
4.
Circ Res ; 134(5): 482-501, 2024 03.
Article in English | MEDLINE | ID: mdl-38323474

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.


Subject(s)
Imidazoles , Induced Pluripotent Stem Cells , Mitochondrial Diseases , Pyridazines , Humans , Animals , Mice , Protein Serine-Threonine Kinases/metabolism , Cardiotoxicity/pathology , Proteomics , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Protein Kinase Inhibitors/toxicity , Mitochondrial Diseases/pathology , Adenosine Triphosphate
6.
Nature ; 569(7755): 222-228, 2019 05.
Article in English | MEDLINE | ID: mdl-30971824

ABSTRACT

The bone marrow microenvironment has a key role in regulating haematopoiesis, but its molecular complexity and response to stress are incompletely understood. Here we map the transcriptional landscape of mouse bone marrow vascular, perivascular and osteoblast cell populations at single-cell resolution, both at homeostasis and under conditions of stress-induced haematopoiesis. This analysis revealed previously unappreciated levels of cellular heterogeneity within the bone marrow niche and resolved cellular sources of pro-haematopoietic growth factors, chemokines and membrane-bound ligands. Our studies demonstrate a considerable transcriptional remodelling of niche elements under stress conditions, including an adipocytic skewing of perivascular cells. Among the stress-induced changes, we observed that vascular Notch delta-like ligands (encoded by Dll1 and Dll4) were downregulated. In the absence of vascular Dll4, haematopoietic stem cells prematurely induced a myeloid transcriptional program. These findings refine our understanding of the cellular architecture of the bone marrow niche, reveal a dynamic and heterogeneous molecular landscape that is highly sensitive to stress and illustrate the utility of single-cell transcriptomic data in evaluating the regulation of haematopoiesis by discrete niche populations.


Subject(s)
Bone Marrow/blood supply , Cellular Microenvironment , Hematopoiesis , Hematopoietic Stem Cells , Single-Cell Analysis , Stem Cell Niche , Adaptor Proteins, Signal Transducing/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Animals , Calcium-Binding Proteins/metabolism , Cell Differentiation , Cell Lineage , Endothelium, Vascular/cytology , Female , Gene Expression Regulation , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Male , Mice , Myeloid Cells/cytology , Myeloid Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , RNA-Seq , Receptors, Notch/metabolism , Stem Cell Niche/genetics , Stress, Physiological/genetics , Transcriptome/genetics
7.
Proc Natl Acad Sci U S A ; 119(35): e2121251119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994670

ABSTRACT

GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.


Subject(s)
Amino Acids , Erythrocytes , Iron , Liver , Macrophages , Protein Serine-Threonine Kinases , Activating Transcription Factor 4/metabolism , Amino Acids/deficiency , Amino Acids/metabolism , Anemia/metabolism , Animals , Cytophagocytosis , Erythrocytes/metabolism , Gene Deletion , Hemolysis , Hypoxia/metabolism , Iron/metabolism , Liver/cytology , Lysosomes/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological
8.
Adv Exp Med Biol ; 1442: 17-28, 2023.
Article in English | MEDLINE | ID: mdl-38228956

ABSTRACT

Hematopoietic stem cells (HSCs) are maintained in the bone marrow microenvironment, also known as the niche, that regulates their proliferation, self-renewal, and differentiation. In this chapter, we will introduce the history of HSC niche research and review the interdependencies between HSCs and their niches. We will further highlight recent advances in our understanding of HSC heterogeneity with regard to HSC subpopulations and their interacting cellular and molecular bone marrow niche constituents.


Subject(s)
Bone Marrow , Stem Cell Niche , Stem Cell Niche/physiology , Hematopoietic Stem Cells , Cell Differentiation/physiology , Bone Marrow Cells
9.
Blood ; 133(11): 1222-1232, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30674470

ABSTRACT

The erythroblastic island (EI), formed by a central macrophage and developing erythroblasts (EBs), was first described decades ago and was recently shown to play an in vivo role in homeostatic and pathological erythropoiesis. The exact molecular mechanisms, however, mediating the interactions between macrophages and EBs remain unclear. Macrophage-EB attacher (Maea) has previously been suggested to mediate homophilic adhesion bounds bridging macrophages and EBs. Maea-deficient mice die perinatally with anemia and defective erythrocyte enucleation, suggesting a critical role in fetal erythropoiesis. Here, we generated conditional knockout mouse models of Maea to assess its cellular and postnatal contributions. Deletion of Maea in macrophages using Csf1r-Cre or CD169-Cre caused severe reductions of bone marrow (BM) macrophages, EBs, and in vivo island formation, whereas its deletion in the erythroid lineage using Epor-Cre had no such phenotype, suggesting a dominant role of Maea in the macrophage for BM erythropoiesis. Interestingly, Maea deletion in spleen macrophages did not alter their numbers or functions. Postnatal Maea deletion using Mx1-Cre or function inhibition using a novel monoclonal antibody also impaired BM erythropoiesis. These results indicate that Maea contributes to adult BM erythropoiesis by regulating the maintenance of macrophages and their interaction with EBs via an as-yet-unidentified EB receptor.


Subject(s)
Bone Marrow/physiology , Cell Adhesion Molecules/physiology , Erythroblasts/cytology , Erythroblasts/physiology , Erythropoiesis , Macrophages/metabolism , Vascular Cell Adhesion Molecule-1/physiology , Animals , Animals, Newborn , Macrophages/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
10.
11.
Nature ; 502(7473): 637-43, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24107994

ABSTRACT

Cell cycle quiescence is a critical feature contributing to haematopoietic stem cell (HSC) maintenance. Although various candidate stromal cells have been identified as potential HSC niches, the spatial localization of quiescent HSCs in the bone marrow remains unclear. Here, using a novel approach that combines whole-mount confocal immunofluorescence imaging techniques and computational modelling to analyse significant three-dimensional associations in the mouse bone marrow among vascular structures, stromal cells and HSCs, we show that quiescent HSCs associate specifically with small arterioles that are preferentially found in endosteal bone marrow. These arterioles are ensheathed exclusively by rare NG2 (also known as CSPG4)(+) pericytes, distinct from sinusoid-associated leptin receptor (LEPR)(+) cells. Pharmacological or genetic activation of the HSC cell cycle alters the distribution of HSCs from NG2(+) periarteriolar niches to LEPR(+) perisinusoidal niches. Conditional depletion of NG2(+) cells induces HSC cycling and reduces functional long-term repopulating HSCs in the bone marrow. These results thus indicate that arteriolar niches are indispensable for maintaining HSC quiescence.


Subject(s)
Arterioles/cytology , Hematopoietic Stem Cells/cytology , Stem Cell Niche , Animals , Bone Marrow/blood supply , Cell Division , Cell Separation , Female , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Nestin/metabolism
12.
Genes Dev ; 23(18): 2134-9, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19696146

ABSTRACT

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16(INK4a), and p21(CIP1). Induction of DNA damage response and chromatin remodeling of the INK4a/ARF locus are two of the mechanisms behind senescence induction. Crucially, ablation of different senescence effectors improves the efficiency of reprogramming, suggesting novel strategies for maximizing the generation of iPS cells.


Subject(s)
Cell Differentiation/genetics , Cellular Reprogramming , Cellular Senescence/genetics , Gene Expression Regulation , Pluripotent Stem Cells/cytology , Animals , Cell Line , Humans , Kruppel-Like Factor 4
13.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746216

ABSTRACT

Neutrophils (PMNs) reside as a marginated pool within the vasculature, ready for deployment during infection. However, how endothelial cells (ECs) control PMN extravasation and activation to strengthen tissue homeostasis remains ill-defined. Here, we found that the vascular ETS-related gene (ERG) is a generalized mechanism regulating PMN activity in preclinical tissue injury models and human patients. We show that ERG loss in ECs rewired PMN-transcriptome, enriched for genes associated with the CXCR2-CXCR4 signaling. Rewired PMNs compromise mice survival after pneumonia and induced lung vascular inflammatory injury following adoptive transfer into naïve mice, indicating their longevity and inflammatory activity memory. Mechanistically, EC-ERG restricted PMN extravasation and activation by upregulating the deubiquitinase A20 and downregulating the NFκB-IL8 cascade. Rescuing A20 in EC-Erg -/- endothelium or suppressing PMN-CXCR2 signaling rescued EC control of PMN activation. Findings deepen our understanding of EC control of PMN-mediated inflammation, offering potential avenues for targeting various inflammatory diseases. Highlights: ERG regulates trans-endothelial neutrophil (PMN) extravasation, retention, and activationLoss of endothelial (EC) ERG rewires PMN-transcriptomeAdopted transfer of rewired PMNs causes inflammation in a naïve mouse ERG transcribes A20 and suppresses CXCR2 function to inactivate PMNs. In brief/blurb: The authors investigated how vascular endothelial cells (EC) control polymorphonuclear neutrophil (PMN) extravasation, retention, and activation to strengthen tissue homeostasis. They showed that EC-ERG controls PMN transcriptome into an anti-adhesive and anti-inflammatory lineage by synthesizing A20 and suppressing PMNs-CXCR2 signaling, defining EC-ERG as a target for preventing neutrophilic inflammatory injury.

14.
Development ; 137(15): 2483-92, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20573702

ABSTRACT

Pluripotent cells develop within the inner cell mass of blastocysts, a mosaic of cells surrounded by an extra-embryonic layer, the trophectoderm. We show that a set of somatic lineage regulators (including Hox, Gata and Sox factors) that carry bivalent chromatin enriched in H3K27me3 and H3K4me2 are selectively targeted by Suv39h1-mediated H3K9me3 and de novo DNA methylation in extra-embryonic versus embryonic (pluripotent) lineages, as assessed both in blastocyst-derived stem cells and in vivo. This stably repressed state is linked with a loss of gene priming for transcription through the exclusion of PRC1 (Ring1B) and RNA polymerase II complexes at bivalent, lineage-inappropriate genes upon trophoblast lineage commitment. Collectively, our results suggest a mutually exclusive role for Ring1B and Suv39h1 in regulating distinct chromatin states at key developmental genes and propose a novel mechanism by which lineage specification can be reinforced during early development.


Subject(s)
Chromatin/chemistry , Gene Expression Regulation, Developmental , Methyltransferases/physiology , Repressor Proteins/physiology , Animals , Blastocyst , Cell Lineage , Chromatin/metabolism , DNA Methylation , Gene Expression Profiling , Gene Silencing , Methyltransferases/metabolism , Mice , Models, Biological , Polycomb Repressive Complex 1 , RNA Interference , RNA Polymerase II/metabolism , Repressor Proteins/metabolism , Trophoblasts/metabolism , Ubiquitin-Protein Ligases
15.
Biomed Chromatogr ; 27(8): 1003-11, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23519701

ABSTRACT

Over recent years, hair has become the ideal matrix for retrospective investigation of chronic abuse, including for tramadol. However, in order to exclude the possibility of external contamination, it is also important to quantify simultaneously its main metabolite, O-desmethyltramadol (M1), which presence in hair reflects systemic exposure. In the present study a methodology aimed at the simultaneous quantification of tramadol and M1 in human hair was developed and validated for the first time. After decontamination of hair samples (60 mg), tramadol and M1 were extracted with methanol in an ultrasonic bath (~5 h). Purification was performed by solid-phase extraction using mixed-mode extraction cartridges. Subsequently to derivatization, analysis was performed by gas chromatography-electron impact/mass spectrometry (GC-EI/MS). The method proved to be selective. The regression analysis for both analytes was shown to be linear in the range of 0.1-20.0 ng/mg with correlation coefficients of 0.9995 and 0.9997 for tramadol and M1, respectively. The coefficients of variation oscillated between 3.85 and 13.24%. The limits of detection were 0.03 and 0.02 ng/mg, and the lower limits of quantification were 0.08 and 0.06 ng/mg for tramadol and M1, respectively. The proof of applicability was performed in hair samples from six patients undergoing tramadol therapy. All samples were positive for tramadol and M1.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Hair/chemistry , Tramadol/analogs & derivatives , Tramadol/analysis , Adult , Aged , Aged, 80 and over , Female , Humans , Least-Squares Analysis , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Solid Phase Extraction
16.
bioRxiv ; 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36711927

ABSTRACT

Functional stromal cells are known to support bone marrow regeneration after chemotherapy or radiation-induced injury to prevent prolonged myelosuppression. However, it is not known how stromal cells within the bone marrow are regenerated after injury. We have utilized a whole bone transplantation model that mimics the initial bone marrow necrosis and fatty infiltration that is seen after bone marrow injury and subsequent recovery. We demonstrate that periosteal skeletal stem cells (P-SSCs) can migrate into the bone marrow and contribute to stromal regeneration and hematopoietic recovery. Once in the bone marrow, P-SSCs are phenotypically and functionally reprogrammed into bone marrow mesenchymal stem cells (BM-MSCs), expressing high levels of hematopoietic stem cell (HSC) niche factors, such as Cxcl12 and Kitl. Additionally, our results further indicate that P-SSCs are more resistant to acute stress than BM-MSCs. Here, we report a new function of P-SSCs, highlighting their major plasticity and the role of the periosteum as a potential source of BM-MSCs following acute bone marrow injury.

17.
Cardiovasc Res ; 119(10): 1997-2013, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37267414

ABSTRACT

AIMS: Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS: We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS: Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.


Subject(s)
RNA, Long Noncoding , Humans , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glycocalyx/metabolism , Endothelial Cells/metabolism , Sunitinib/toxicity , Sunitinib/metabolism
18.
Hum Mol Genet ; 19(13): 2554-66, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20385540

ABSTRACT

CDH3/P-cadherin is a classical cadherin. Overexpression of which has been associated with proliferative lesions of high histological grade, decreased cell polarity and poor survival of patients with breast cancer. In vitro studies showed that it can be up-regulated by ICI 182,780, suggesting that the lack of ERalpha signalling is responsible for the aberrant P-cadherin overexpression and for its role in inducing breast cancer cell invasion and migration. However, the mechanism by which ER-signalling inhibition leads to P-cadherin expression is still unknown. The aim of this study was to explore the molecular mechanism linking the ERalpha-signalling and P-cadherin-regulated expression in breast cancer cell lines. This study showed that ICI 182,780 is able to increase CDH3 promoter activity, inducing high levels of the active chromatin mark H3 lysine 4 dimethylation. We also observed, for the first time, that the transcription factor C/EBPbeta is able to up-regulate CDH3 promoter activity in breast cancer cells. Moreover, we showed that the expression of P-cadherin and C/EBPbeta are highly associated in human breast carcinomas and linked with a worse prognosis of breast cancer patients. This study demonstrates the existence of an epigenetic regulation by which ICI 182,780 up-regulates P-cadherin expression in MCF-7/AZ breast cancer cells through chromatin remodelling at CDH3 promoter, bringing forward the growing evidence that ERalpha signalling-abrogation by anti-oestrogens is able to induce the expression of ERalpha-repressed genes which, in the appropriate cell biology context, may contribute to a breast cancer cell invasion phenotype.CDH3 GenBank accession no. NT_010498.


Subject(s)
Cadherins/genetics , Chromatin Assembly and Disassembly , Estradiol/analogs & derivatives , Promoter Regions, Genetic , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cadherins/metabolism , Cell Line, Tumor , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Female , Fulvestrant , Humans , Signal Transduction , Transcription Factors/metabolism , Up-Regulation
19.
Biomed Chromatogr ; 26(8): 1041-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22753238

ABSTRACT

The development of analytical techniques that enable the use of hair as an alternative matrix for the analysis of drugs of abuse is useful for confirming the exposure in a larger time window (weeks to months, depending on the length of the hair shaft). In the present study a methodology aimed at the simultaneous quantification of cocaine and morphine in human hair was developed and validated. After decontamination, hair samples (20 mg) were incubated with a mixture of methanol/hydrochloric acid (2:1) at 65 °C overnight (~16 h) in order to extract the drugs of the matrix. Purification was performed by solid-phase extraction using mixed-mode extraction cartridges. After derivatization with N-methyl-N-(trimethylsilyl) trifluoroacetamide, blank, standards and samples were analyzed by gas chromatography/electron impact-mass spectrometry (GC-EI/MS). The method proved to be selective, as there were no interferences of endogenous compounds with the same retention time as cocaine, morphine and ethylmorphine (internal standard). The regression analysis for both analytes showed linearity in the range 0.25-10.00 ng/mg with correlation coefficients ranging from 0.9989 to 0.9991. The coefficients of variation oscillated between 0.83 and 14.60%. The limits of detection were 0.01 and 0.02 ng/mg, and the limits of quantification were 0.03 and 0.06 ng/mg for cocaine and morphine, respectively. The proposed GC-EI/MS method provided an accurate and simple assay with adequate precision and recovery for the quantification of cocaine and morphine in hair samples. The proof of applicability was performed in hair samples obtained from drug addicts enrolled in a Regional Detoxification Treatment Center. The importance of hair samples is highlighted, since positives results were obtained when urine immunoassay analyses were negative.


Subject(s)
Cocaine/analysis , Gas Chromatography-Mass Spectrometry/methods , Hair/chemistry , Morphine/analysis , Substance Abuse Detection/methods , Drug Users , Humans , Linear Models , Male , Reproducibility of Results , Sensitivity and Specificity
20.
Cell Stem Cell ; 29(2): 232-247.e7, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35065706

ABSTRACT

Host microbiota crosstalk is essential for the production and functional modulation of blood-cell lineages. Whether, and if so how, the microbiota influences hematopoietic stem cells (HSCs) is unclear. Here, we show that the microbiota regulates HSC self-renewal and differentiation under stress conditions by modulating local iron availability in the bone marrow (BM). In microbiota-depleted mice, HSC self-renewal was enhanced during regeneration, while the commitment toward differentiation was dramatically compromised. Mechanistically, microbiota depletion selectively impaired the recycling of red blood cells (RBCs) by BM macrophages, resulting in reduced local iron levels without affecting systemic iron homeostasis. Limiting iron availability in food (in vivo) or in culture (ex vivo), or by CD169+ macrophage depletion, enhanced HSC self-renewal and expansion. These results reveal an intricate interplay between the microbiota, macrophages, and iron, and their essential roles in regulating critical HSC fate decisions under stress.


Subject(s)
Bone Marrow , Microbiota , Animals , Bone Marrow/physiology , Cell Differentiation , Hematopoietic Stem Cells , Iron , Mice
SELECTION OF CITATIONS
SEARCH DETAIL