Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters

Publication year range
1.
Chemistry ; 30(33): e202400082, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38628039

ABSTRACT

Fagopyrins are phenantroperylenequinones present in the flowers of Fagopyrum esculentum (buckwheat) endowed with photodynamic activity. It has been reported that fagopyrin extracts actually contain a complex mixture of closely related compounds, differing only on the nature of the perylenequinone substituents. We report our systematic and detailed study on the chemical composition of fagopyrin extracts by a combination of preparative and analytical techniques. The combined use of 1H-NMR and CD spectroscopy was found to be particularly suited to fully characterize all stereochemical aspects of the extracted fagopyrins. For the first time nine isomers have been structurally characterized and their stereochemistry fully elucidated. The presence of two different heterocyclic ring substituents, two stereogenic centers and the inherent axial chirality of the aromatic system provides a complex stereochemical relationships among isomers, thus giving account of the high level of molecular multiplicity found in the extract.


Subject(s)
Circular Dichroism , Fagopyrum , Flowers , Fagopyrum/chemistry , Flowers/chemistry , Stereoisomerism , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Molecular Structure , Plant Extracts/chemistry , Quinones
2.
Pharmacol Res ; 206: 107296, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971269

ABSTRACT

The activity of sirtuin 1 (SIRT1, a member of the NAD+-dependent deacetylases family) decreases during aging as NAD+ levels naturally decline, thus increasing the risk of several age-associated diseases. Several sirtuin-activating compounds (STACs) have been developed to counteract the age-associated reduction in SIRT1 activity, and some of them are currently under development in clinical trials. STACs induce SIRT1 activation, either through allosteric activation of the enzyme in the presence of NAD+, or by increasing NAD+ levels by inhibiting its degradation or by supplying a key precursor in biosynthesis. In this study, we have identified (E)-2'-des-methyl sulindac analogues as a novel class of STACs that act also in the absence of NAD+, a peculiar behavior demonstrated through enzymatic and mass spectrometry experiments, both in vitro and in cell lines. The activation of the SIRT1 pathway was confirmed in vivo through gene expression and metabolomics analysis. Our data suggest that these compounds could serve as candidate leads for a novel therapeutic strategy aimed at addressing a key metabolic deficiency that may contribute to metabolic and age-associated diseases.


Subject(s)
NAD , Sirtuin 1 , Sirtuin 1/metabolism , NAD/metabolism , Animals , Humans , Enzyme Activators/pharmacology , Cell Line , Mice , Male , Mice, Inbred C57BL , Drug Discovery
3.
Molecules ; 29(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338470

ABSTRACT

The acylation of 1,3-benzodioxole was studied in a continuous process using a recyclable heterogeneous substoichiometric catalyst. In a short time period (30 min), at 100 °C, the conversion rate was 73%, with a selectivity of 62% of the desired acylated product; the reaction was run continuously for 6 h, showing excellent stability and selectivity. Moreover, the unreacted starting material, 1,3-benzodioxole, can be easily separated by distillation and recycled.

4.
Chembiochem ; 24(21): e202300477, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37490046

ABSTRACT

Ozonolysis is a useful as well as dangerous reaction for performing alkene cleavage. On the other hand, enzymes are considered a more sustainable and safer alternative. Among them, Caulobacter segnis dioxygenase (CsO2) known so far for its ability to catalyze the coenzyme-free oxidation of vinylguaiacol into vanillin, was selected and its substrate scope evaluated towards diverse natural and synthetic stilbenoids. Under optimized conditions, CsO2 catalyzed the oxidative cleavage of the C=C double bonds of various trans-stilbenes, providing that a hydroxyl moiety was necessary in para-position of the phenyl group (e. g., resveratrol and its derivatives) for the reaction to take place, which was confirmed by modelling studies. The reactions occurred rapidly (0.5-3 h) with high conversions (95-99 %) and without formation of by-products. The resveratrol biotransformation was carried out on 50-mL scale thus confirming the feasibility of the biocatalytic system as a preparative method.


Subject(s)
Dioxygenases , Ozone , Stilbenes , Dioxygenases/metabolism , Resveratrol , Stilbenes/chemistry
5.
Inorg Chem ; 62(19): 7131-7140, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37139684

ABSTRACT

The synthesis of fluorescein propargyl diether (L) and two different dinuclear gold(I) derivatives containing a water-soluble phosphane [1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane (PTA) for complex 1 and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) for complex 2] has been successfully performed. All compounds display intrinsic emission from fluorescein, being less intense for gold(I) complexes due to the heavy-atom effect. All compounds aggregate in acetonitrile/water mixtures with the formation of larger aggregates for those samples containing more water content, as evidenced by dynamic light scattering and small-angle X-ray scattering experiments, in agreement with the absorption and emission data. The emission of the samples increases when they are used to obtain luminescent materials with four different organic matrices [poly(methyl methacrylate, polystyrene (PS), cellulose, and Zeonex]. The compounds display very high values of singlet oxygen (1O2) production in dichloromethane. Singlet oxygen production was also evaluated in the doped matrices, being the highest in PS and with an exciting increase on PS microspheres. Density functional theory (BP86-D3) and GFN2-xTB calculations were used to model the assembly of L and complexes 1 and 2 with the different organic matrices and rationalize the experimental findings based on the geometries, molecular electrostatic potential surfaces, and complementarity and HOMO-LUMO gaps.

6.
Sensors (Basel) ; 23(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904618

ABSTRACT

Industrial control systems (ICSs), supervisory control and data acquisition (SCADA) systems, and distributed control systems (DCSs) are fundamental components of critical infrastructure (CI). CI supports the operation of transportation and health systems, electric and thermal plants, and water treatment facilities, among others. These infrastructures are not insulated anymore, and their connection to fourth industrial revolution technologies has expanded the attack surface. Thus, their protection has become a priority for national security. Cyber-attacks have become more sophisticated and criminals are able to surpass conventional security systems; therefore, attack detection has become a challenging area. Defensive technologies such as intrusion detection systems (IDSs) are a fundamental part of security systems to protect CI. IDSs have incorporated machine learning (ML) techniques that can deal with broader kinds of threats. Nevertheless, the detection of zero-day attacks and having technological resources to implement purposed solutions in the real world are concerns for CI operators. This survey aims to provide a compilation of the state of the art of IDSs that have used ML algorithms to protect CI. It also analyzes the security dataset used to train ML models. Finally, it presents some of the most relevant pieces of research on these topics that have been developed in the last five years.

7.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36769028

ABSTRACT

The fulfilment of the European "Farm to Fork" strategy requires a drastic reduction in the use of "at risk" synthetic pesticides; this exposes vulnerable agricultural sectors-among which is the European risiculture-to the lack of efficient means for the management of devastating diseases, thus endangering food security. Therefore, novel scaffolds need to be identified for the synthesis of new and more environmentally friendly fungicides. In the present work, we employed our previously developed 3D model of P. oryzae cytochrome bc1 (cyt bc1) complex to perform a high-throughput virtual screening of two commercially available compound libraries. Three chemotypes were selected, from which a small collection of differently substituted analogues was designed and synthesized. The compounds were tested as inhibitors of the cyt bc1 enzyme function and the mycelium growth of both strobilurin-sensitive (WT) and -resistant (RES) P. oryzae strains. This pipeline has permitted the identification of thirteen compounds active against the RES cyt bc1 and five compounds that inhibited the WT cyt bc1 function while inhibiting the fungal mycelia only minimally. Serendipitously, among the studied compounds we identified a new chemotype that is able to efficiently inhibit the mycelium growth of WT and RES strains by ca. 60%, without inhibiting the cyt bc1 enzymatic function, suggesting a different mechanism of action.


Subject(s)
Ascomycota , Fungicides, Industrial , Cytochromes b/metabolism , Ascomycota/metabolism , Fungicides, Industrial/pharmacology , Strobilurins/pharmacology , Electron Transport Complex III
8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769058

ABSTRACT

Stilbenoids are anti-inflammatory and antioxidant compounds, with resveratrol being the most investigated molecule in this class. However, the actions of most other stilbenoids are much less studied. This study compares five monomeric (resveratrol, piceatannol, pterostilbene, pinostilbene, and trimethoxy-resveratrol) and two dimeric (dehydro-δ-viniferin and trans-δ-viniferin) stilbenoids for their capability to modulate the production of bacteria-induced cytokines (IL-12, IL-10, and TNF-α), as well as lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), in murine bone marrow-derived dendritic cells. All monomeric species showed dose-dependent inhibition of E. coli-induced IL-12 and TNF-α, whereas only resveratrol and piceatannol inhibited IL-10 production. All monomers, except trimethoxy-resveratrol, inhibited L. acidophilus-induced IL-12, IL-10, and TNF-α production. The dimer dehydro-δ-viniferin remarkably enhanced L. acidophilus-induced IL-12 production. The contrasting effect of resveratrol and dehydro-δ-viniferin on IL-12 production was due, at least in part, to a divergent inactivation of the mitogen-activated protein kinases by the two stilbenoids. Despite having moderate to high total antioxidant activity, dehydro-δ-viniferin was a weak inhibitor of LPS-induced ROS formation. Conversely, resveratrol and piceatannol potently inhibited LPS-induced ROS formation. Methylated monomers showed a decreased antioxidant capacity compared to resveratrol, also depending on the methylation site. In summary, the immune-modulating effect of the stilbenoids depends on both specific structural features of tested compounds and the stimulating bacteria.


Subject(s)
Cytokines , Stilbenes , Mice , Animals , Resveratrol/pharmacology , Lipopolysaccharides/pharmacology , Antioxidants/pharmacology , Interleukin-10 , Reactive Oxygen Species , Tumor Necrosis Factor-alpha , Bone Marrow , Escherichia coli , Stilbenes/pharmacology , Stilbenes/chemistry , Interleukin-12 , Dendritic Cells
9.
Inorg Chem ; 61(18): 6964-6976, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35475605

ABSTRACT

Aggregation-induced emission (AIE) has gained a remarkable amount of interest in the past 20 years, but the majority of the studies are based on organic structures. Herein, three dinuclear gold(I) complexes, with the general formula [PPh2XPPh2-Au2-Coum2], where the Au(I) atom is linked to three different diphosphanes [PPh2XPPh2; DPPM for X = CH2 (1.1), DPPP for X = (CH2)3 (1.2), and DPPA for X = C≡C (1.3)] and the propynyloxycoumarin precursor (1, 4-methyl-substituted coumarin), have been synthesized. The compounds present AIE characteristics, AIEgens, with high luminescence quantum yields in the solid state when they are compared to dilute solutions. Photophysical studies (steady-state and time-resolved fluorescence) were obtained, with AIE being observed with the three gold(I) complexes in acetonitrile/water mixtures. This was further corroborated with dynamic light scattering measurements. Time-dependent density functional theory (TDDFT) electronic calculations show that the compounds have different syn and anti conformations (relative to the coumarin core) with 1.1 syn and 1.2 and 1.3 both anti. From time-resolved fluorescence experiments, the augment in the contribution of the longer decay component is found to be associated with the emission of the aggregate (AIE effect) and its nature (involving a dimer) rationalized from TDDFT electronic calculations.

10.
Chemistry ; 27(34): 8832-8845, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-33890349

ABSTRACT

Stilbenoids are natural compounds endowed with several biological activities, including cardioprotection and cancer prevention. Among them, (±)-trans-δ-viniferin, deriving from trans-resveratrol dimerization, was investigated in its ability to target DNA duplex and G-quadruplex structures by exploiting NMR spectroscopy, circular dichroism, fluorescence spectroscopy and molecular docking. (±)-trans-δ-Viniferin proved to bind both the minor and major grooves of duplexes, whereas it bound the 3'- and 5'-ends of a G-quadruplex by stacking on the outer quartets, accompanied by rearrangement of flanking residues. Specifically, (±)-trans-δ-viniferin demonstrated higher affinity for the investigated DNA targets than its monomeric counterpart. Additionally, the methoxylated derivatives of (±)-trans-δ-viniferin and trans-resveratrol, i. e. (±)-pterostilbene-trans-dihydrodimer and trans-pterostilbene, respectively, were evaluated, revealing similar binding modes, affinities and stoichiometries with the DNA targets as their parent analogues. All tested compounds were cytotoxic at µM concentration on several cancer cell lines, showing DNA damaging activity consistent with their ability to tightly interact with duplex and G-quadruplex structures.


Subject(s)
G-Quadruplexes , Stilbenes , Circular Dichroism , DNA , Molecular Docking Simulation , Resveratrol
11.
Inorg Chem ; 60(24): 18753-18763, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34719915

ABSTRACT

The aggregation process of a series of mono- and dinuclear gold(I) complexes containing a 4-ethynylaniline ligand and a phosphane at the second coordination position (PR3-Au-C≡CC6H4-NH2, complexes 1-5, and (diphos)(Au-C≡CC6H4-NH2)2, complexes 6-8), whose biological activity was previously studied by us, has been carefully analyzed through absorption, emission, and NMR spectroscopy, together with dynamic light scattering and small-angle X-ray scattering. These experiments allow us to retrieve information about how the compounds enter the cells. It was observed that all compounds present aggregation in fresh solutions, before biological treatment, and thus they must be entering the cells as aggregates. Inductively coupled plasma atomic emission spectrometry measurements showed that mononuclear complexes are mainly found in the cytosolic fraction; the dinuclear complexes are mainly found in a subsequent fraction composed of nuclei and cytoskeleton. Additionally, dinuclear complex 8 affects the actin aggregation to a larger extent, suggesting a cooperative effect of dinuclear compounds.


Subject(s)
Cytoskeleton
12.
Bioorg Chem ; 108: 104644, 2021 03.
Article in English | MEDLINE | ID: mdl-33486371

ABSTRACT

Benzil reductases are dehydrogenases preferentially active on aromatic 1,2-diketones, but the reasons for this peculiar substrate recognition have not yet been clarified. The benzil reductase (KRED1-Pglu) from the non-conventional yeast Pichia glucozyma showed excellent activity and stereoselectivity in the monoreduction of space-demanding aromatic 1,2-dicarbonyls, making this enzyme attractive as biocatalyst in organic chemistry. Structural insights into the stereoselective monoreduction of 1,2-diketones catalyzed by KRED1-Pglu were investigated starting from its 1.77 Å resolution crystal structure, followed by QM and classical calculations; this study allowed for the identification and characterization of the KRED1-Pglu reactive site. Once identified the recognition elements involved in the stereoselective desymmetrization of bulky 1,2-dicarbonyls mediated by KRED1-Pglu, a mechanism was proposed together with an in silico prediction of substrates reactivity.


Subject(s)
Alcohol Oxidoreductases/metabolism , Aldehydes/metabolism , Pichia/enzymology , Aldehydes/chemistry , Models, Molecular , Molecular Structure , Oxidation-Reduction
13.
Int J Mol Sci ; 22(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918510

ABSTRACT

The increasing emergence of fungicide-resistant pathogens requires urgent solutions for crop disease management. Here, we describe a structural investigation of new fungicides obtained by combining strobilurin and succinate dehydrogenase inhibitor pharmacophores. We identified compounds endowed with very good activity against wild-type Pyricularia oryzae, combined in some cases with promising activity against strobilurin-resistant strains. The first three-dimensional model of P. oryzae cytochrome bc1 complex containing azoxystrobin as a ligand was developed. The model was validated with a set of commercially available strobilurins, and it well explains both the resistance mechanism to strobilurins mediated by the mutation G143A and the activity of metyltetraprole against strobilurin-resistant strains. The obtained results shed light on the key recognition determinants of strobilurin-like derivatives in the cytochrome bc1 active site and will guide the further rational design of new fungicides able to overcome resistance caused by G143A mutation in the rice blast pathogen.


Subject(s)
Ascomycota , Drug Resistance, Fungal , Fungicides, Industrial/chemical synthesis , Strobilurins/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Succinate Dehydrogenase/antagonists & inhibitors
14.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34946674

ABSTRACT

The natural stilbenoid dehydro-δ-viniferin, containing a benzofuran core, has been recently identified as a promising antimicrobial agent. To define the structural elements relevant to its activity, we modified the styryl moiety, appended at C5 of the benzofuran ring. In this paper, we report the construction of stilbenoid-derived 2,3-diaryl-5-substituted benzofurans, which allowed us to prepare a focused collection of dehydro-δ-viniferin analogues. The antimicrobial activity of the synthesized compounds was evaluated against S. aureus ATCC29213. The simplified analogue 5,5'-(2-(4-hydroxyphenyl)benzofuran-3,5-diyl)bis(benzene-1,3-diol), obtained in three steps from 4-bromo-2-iodophenol (63% overall yield), emerged as a promising candidate for further investigation (MIC = 4 µg/mL).


Subject(s)
Anti-Bacterial Agents , Benzofurans , Resorcinols , Staphylococcus aureus/growth & development , Stilbenes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Benzofurans/chemistry , Benzofurans/pharmacology , Microbial Sensitivity Tests , Resorcinols/chemistry , Resorcinols/pharmacology , Stilbenes/chemistry , Stilbenes/pharmacology
15.
J Synchrotron Radiat ; 27(Pt 2): 503-506, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32153291

ABSTRACT

The vertical intensity distribution of synchrotron-based X-ray beams usually has a Gaussian profile encompassing large intensity variations. For biomedical imaging applications this may entail sub-optimal dose distributions and large fluctuations in terms of image noise. Commonly, planar metallic filters coupled with absorbing slits systems are applied to adjust the delivered flux and to limit intensity variations, respectively. The latter results in a reduction of the effective beam size. A flattening filter that counterbalances the transverse inhomogeneity, while retaining a sufficient flux, has been developed in the context of a monochromatic phase-contrast breast computed tomography application, ongoing at the Elettra synchrotron facility. The implementation of the new filtration system results in homogeneous intensity (hence dose) distribution and signal-to-noise ratio across the imaged volume. Finally, and most importantly, it allows a wider portion of the beam to be used, directly translating into a major (∼40%) reduction of the overall scan time for samples requiring a field of view larger than the beam size (i.e. multiple translation steps).


Subject(s)
Breast Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Computer Simulation , Equipment Design , Female , Humans , Mammography/instrumentation , Radiation Dosage , Signal-To-Noise Ratio , Synchrotrons
16.
Chemistry ; 26(15): 3348-3357, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-31917499

ABSTRACT

We report the synthesis of an unprecedented mono-gold(I) phosphine complex based on a "two-wall" aryl-ethynyl extended calix[4]pyrrole. We describe and compare the binding properties of the parent 10α,20α-bis-aryl-ethynyl calix[4]pyrrole ligand and the prepared organometallic compound as receptors for tetraalkylammonium chloride salts in dichloromethane and acetone. We describe the results of 1 H NMR, UV-Vis titrations and isothermal titration calorimetry (ITC) experiments in dichloromethane and acetone, aiming to thermodynamically characterize the formed complexes. The obtained results indicate a noticeable decrease in the binding affinity of the chloride for the mono-gold(I) receptor 1 compared to the parent ligand 2. The increase in the negative value of the electrostatic surface potential at the center of the aromatic ring of the gold(I) meso-aryl-ethynyl substituent serves to explain the observed results and the presence in solution of the chloride complex of 1 as a mixture of two conformers.

17.
Proc Natl Acad Sci U S A ; 114(33): E6942-E6951, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760974

ABSTRACT

NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A-D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Binding, Competitive , Crystallography, X-Ray , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/metabolism , Female , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Humans , Models, Molecular , Oocytes/metabolism , Oocytes/physiology , Patch-Clamp Techniques , Protein Domains , Protein Multimerization , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/metabolism , Quinoxalines/chemistry , Quinoxalines/metabolism , Quinoxalines/pharmacology , Rats , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Xenopus
18.
Int J Mol Sci ; 21(13)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610556

ABSTRACT

Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.


Subject(s)
Coumarins/chemistry , Coumarins/metabolism , Tissue Scaffolds/chemistry , Chemistry, Pharmaceutical , Humans , Structure-Activity Relationship
19.
Int J Mol Sci ; 21(6)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245220

ABSTRACT

In a recent study, we investigated the antimicrobial activity of a collection of resveratrol-derived monomers and dimers against a series of foodborne pathogens. Out of the tested molecules, dehydro-δ-viniferin and dehydro-ε-viniferin emerged as the most promising derivatives. To define the structural elements essential to the antimicrobial activity against the foodborne pathogen L. monocytogenes Scott A as a model Gram-positive microorganism, the synthesis of a series of simplified benzofuran-containing derivatives was carried out. The systematic removal of the aromatic moieties of the parent molecules allowed a deeper insight into the most relevant structural features affecting the activity. While the overall structure of compound 1 could not be altered without a substantial loss of antimicrobial activity, the structural simplification of compound 2 (minimal inhibitory concentration (MIC) 16 µg/mL, minimal bactericidal concentration (MBC) >512 µg/mL) led to the analogue 7 with increased activity (MIC 8 µg/mL, MBC 64 µg/mL).


Subject(s)
Anti-Bacterial Agents/chemistry , Benzofurans/chemistry , Listeria monocytogenes/drug effects , Resorcinols/chemistry , Stilbenes/chemistry , Anti-Bacterial Agents/pharmacology , Benzofurans/chemical synthesis , Benzofurans/pharmacology , Cell Line , Fibroblasts/drug effects , Food Microbiology , Humans , Microbial Sensitivity Tests , Resorcinols/pharmacology , Resveratrol/chemistry , Resveratrol/pharmacology , Skin/drug effects , Stilbenes/pharmacology
20.
Molecules ; 25(5)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182773

ABSTRACT

The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl-agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides.


Subject(s)
Antiviral Agents/chemistry , Enzymes, Immobilized/chemistry , Purine-Nucleoside Phosphorylase/chemistry , Vidarabine/chemistry , Aeromonas hydrophila/enzymology , Biocatalysis , Bioreactors , Biotransformation/drug effects , Clostridium perfringens/enzymology , Enzymes, Immobilized/genetics , Glyoxylates/chemistry , Humans , Protein Engineering/methods , Purine Nucleosides/chemistry , Purine Nucleosides/metabolism , Purine-Nucleoside Phosphorylase/genetics , Sepharose/chemistry , Substrate Specificity , Vidarabine/biosynthesis , Vidarabine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL