Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35931082

ABSTRACT

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Escherichia coli/genetics , Gastrointestinal Microbiome/physiology , Mice , Transgenes
2.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29754817

ABSTRACT

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Insulin-Secreting Cells/drug effects , Receptors, Calcitriol/metabolism , Transcription Factors/metabolism , Vitamin D/pharmacology , Animals , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Chromatin Assembly and Disassembly , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Humans , Insulin/blood , Insulin/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Mutagenesis, Site-Directed , Oxidative Phosphorylation/drug effects , Protein Binding , RNA Interference , RNA, Guide, Kinetoplastida/genetics , RNA, Small Interfering/metabolism , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription, Genetic/drug effects
3.
Immunity ; 54(7): 1561-1577.e7, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34102100

ABSTRACT

A common metabolic alteration in the tumor microenvironment (TME) is lipid accumulation, a feature associated with immune dysfunction. Here, we examined how CD8+ tumor infiltrating lymphocytes (TILs) respond to lipids within the TME. We found elevated concentrations of several classes of lipids in the TME and accumulation of these in CD8+ TILs. Lipid accumulation was associated with increased expression of CD36, a scavenger receptor for oxidized lipids, on CD8+ TILs, which also correlated with progressive T cell dysfunction. Cd36-/- T cells retained effector functions in the TME, as compared to WT counterparts. Mechanistically, CD36 promoted uptake of oxidized low-density lipoproteins (OxLDL) into T cells, and this induced lipid peroxidation and downstream activation of p38 kinase. Inhibition of p38 restored effector T cell functions in vitro, and resolution of lipid peroxidation by overexpression of glutathione peroxidase 4 restored functionalities in CD8+ TILs in vivo. Thus, an oxidized lipid-CD36 axis promotes intratumoral CD8+ T cell dysfunction and serves as a therapeutic avenue for immunotherapies.


Subject(s)
CD36 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , Lipid Peroxidation/physiology , Lipoproteins, LDL/metabolism , Neoplasms/metabolism , Receptors, Scavenger/metabolism , Animals , Biological Transport/physiology , Cell Line, Tumor , HEK293 Cells , Humans , Leukocytes, Mononuclear/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Microenvironment/physiology
4.
Nature ; 609(7928): 846-853, 2022 09.
Article in English | MEDLINE | ID: mdl-35940205

ABSTRACT

Thyroid hormones are vital in metabolism, growth and development1. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR)2. In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity3. How autoantibodies mimic thyrotropin function remains unclear. Here we determined cryo-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. Thyrotropin selects an upright orientation of the extracellular domain owing to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody from a patient with Graves' disease selects a similar upright orientation of the extracellular domain. Reorientation of the extracellular domain transduces a conformational change in the seven-transmembrane-segment domain via a conserved hinge domain, a tethered peptide agonist and a phospholipid that binds within the seven-transmembrane-segment domain. Rotation of the TSHR extracellular domain relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to other G-protein-coupled receptors with large extracellular domains.


Subject(s)
Cryoelectron Microscopy , Immunoglobulins, Thyroid-Stimulating , Receptors, Thyrotropin , Thyrotropin , Cell Membrane/metabolism , Graves Disease/immunology , Graves Disease/metabolism , Humans , Immunoglobulins, Thyroid-Stimulating/chemistry , Immunoglobulins, Thyroid-Stimulating/immunology , Immunoglobulins, Thyroid-Stimulating/pharmacology , Immunoglobulins, Thyroid-Stimulating/ultrastructure , Phospholipids/metabolism , Protein Domains , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/ultrastructure , Receptors, Thyrotropin/agonists , Receptors, Thyrotropin/chemistry , Receptors, Thyrotropin/immunology , Receptors, Thyrotropin/ultrastructure , Rotation , Thyrotropin/chemistry , Thyrotropin/metabolism , Thyrotropin/pharmacology
5.
Nature ; 586(7831): 790-795, 2020 10.
Article in English | MEDLINE | ID: mdl-32788725

ABSTRACT

Serine, glycine and other nonessential amino acids are critical for tumour progression, and strategies to limit their availability are emerging as potential therapies for cancer1-3. However, the molecular mechanisms driving this response remain unclear and the effects on lipid metabolism are relatively unexplored. Serine palmitoyltransferase (SPT) catalyses the de novo biosynthesis of sphingolipids but also produces noncanonical 1-deoxysphingolipids when using alanine as a substrate4,5. Deoxysphingolipids accumulate in the context of mutations in SPTLC1 or SPTLC26,7-or in conditions of low serine availability8,9-to drive neuropathy, and deoxysphinganine has previously been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and the promiscuity of SPT to modulate the endogenous synthesis of toxic deoxysphingolipids and slow tumour progression. Anchorage-independent growth reprogrammes a metabolic network involving serine, alanine and pyruvate that drives the endogenous synthesis and accumulation of deoxysphingolipids. Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Serine/deficiency , Sphingolipids/chemistry , Sphingolipids/metabolism , Alanine/biosynthesis , Alanine/metabolism , Alanine/pharmacology , Animals , Cell Adhesion/drug effects , Cell Division/drug effects , Diet , Female , Glycine/biosynthesis , Glycine/deficiency , Glycine/metabolism , Glycine/pharmacology , HCT116 Cells , Humans , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Mice , Mitochondria/metabolism , Neoplasms/drug therapy , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Phosphoglycerate Dehydrogenase/metabolism , Pyruvic Acid/metabolism , Serine/blood , Serine/pharmacology , Serine C-Palmitoyltransferase/antagonists & inhibitors , Serine C-Palmitoyltransferase/metabolism , Spheroids, Cellular/pathology , Sphingolipids/biosynthesis , Stress, Physiological/drug effects , Xenograft Model Antitumor Assays
6.
J Biol Chem ; 300(5): 107291, 2024 May.
Article in English | MEDLINE | ID: mdl-38636661

ABSTRACT

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Subject(s)
Ceramides , Receptors, Adiponectin , Retina , Animals , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Mice , Ceramides/metabolism , Retina/metabolism , Retina/pathology , Mice, Knockout , Fatty Acids, Unsaturated/metabolism , Retinal Pigment Epithelium/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
7.
Nat Chem Biol ; 19(2): 187-197, 2023 02.
Article in English | MEDLINE | ID: mdl-36266352

ABSTRACT

Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.


Subject(s)
Aging , Lipids , Animals , Humans , Mice , Aging/genetics , Anti-Inflammatory Agents , Brain/metabolism , Microglia/metabolism , NF-kappa B/metabolism
8.
J Biol Chem ; 295(18): 5891-5905, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32152231

ABSTRACT

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS-based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.


Subject(s)
Esterases/metabolism , Esters/chemistry , Fatty Acids/chemistry , Fatty Acids/metabolism , Membrane Proteins/metabolism , Animals , Esterases/deficiency , Esterases/genetics , Gene Knockout Techniques , Hydrolysis , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice
9.
Exp Parasitol ; 201: 11-20, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31022392

ABSTRACT

The characteristics of parasitic infections are often tied to host behavior. Although most studies have investigated definitive hosts, intermediate hosts can also play a role in shaping the distribution and accumulation of parasites. This is particularly relevant in larval stages, where intermediate host's behavior could potentially interfere in the molecules secreted by the parasite into the next host during infection. To investigate this hypothesis, we used a proteomic approach to analyze excretion/secretion products (ESP) from Fasciola hepatica newly excysted juveniles (NEJ) derived from two intermediate host species, Lymnaea viatrix and Pseudosuccinea columella. The two analyzed proteomes showed differences in identity, abundance, and functional classification of the proteins. This observation could be due to differences in the biological cycle of the parasite in the host, environmental aspects, and/or host-dependent factors. Categories such as protein modification machinery, protease inhibitors, signal transduction, and cysteine-rich proteins showed different abundance between samples. More specifically, differences in abundance of individual proteins such as peptidyl-prolyl cis-trans isomerase, thioredoxin, cathepsin B, cathepsin L, and Kunitz-type inhibitors were identified. Based on the differences identified between NEJ ESP samples, we can conclude that the intermediate host is a factor influencing the proteomic profile of ESP in F. hepatica.


Subject(s)
Fasciola hepatica/metabolism , Helminth Proteins/metabolism , Lymnaea/parasitology , Proteomics , Snails/parasitology , Animals , Carbonic Anhydrases/classification , Carbonic Anhydrases/metabolism , Helminth Proteins/classification , Larva/metabolism , Peptide Hydrolases/classification , Peptide Hydrolases/metabolism , Peroxiredoxins/classification , Peroxiredoxins/metabolism , Protease Inhibitors/classification , Protease Inhibitors/metabolism , Receptors, Cell Surface/classification , Receptors, Cell Surface/metabolism
10.
J Proteome Res ; 15(7): 2236-45, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27255303

ABSTRACT

In recent years, phenotypic screening has assumed a leading role in drug discovery efforts. However, development of new drugs from bioactive compounds obtained in screening campaigns requires identification of the cellular targets responsible for their biological activities. A new energetics-based method for target identification is presented: pulse proteolysis and precipitation for target identification (PePTID). In this method, proteins incubated with or without a ligand and submitted to a brief proteolytic pulse are directly analyzed and compared using a label-free semiquantitative mass spectrometry strategy, dispensing the SDS-PAGE readout and greatly improving the throughput. As a proof-of-concept, we applied the PePTID method to identify ATP-binding proteins in Mycobacterium smegmatis, a model system for Mycobacterium tuberculosis, the etiological agent of tuberculosis.


Subject(s)
Bacterial Proteins/analysis , Chemical Precipitation , Drug Discovery/methods , Proteolysis , Carrier Proteins/analysis , Ligands , Mycobacterium smegmatis/chemistry , Mycobacterium tuberculosis/chemistry
11.
Bioinformatics ; 30(15): 2208-9, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24681903

ABSTRACT

MOTIVATION: We introduce Census 2, an update of a mass spectrometry data analysis tool for peptide/protein quantification. New features for analysis of isobaric labeling, such as Tandem Mass Tag (TMT) or Isobaric Tags for Relative and Absolute Quantification (iTRAQ), have been added in this version, including a reporter ion impurity correction, a reporter ion intensity threshold filter and an option for weighted normalization to correct mixing errors. TMT/iTRAQ analysis can be performed on experiments using HCD (High Energy Collision Dissociation) only, CID (Collision Induced Dissociation)/HCD (High Energy Collision Dissociation) dual scans or HCD triple-stage mass spectrometry data. To improve measurement accuracy, we implemented weighted normalization, multiple tandem spectral approach, impurity correction and dynamic intensity threshold features. AVAILABILITY AND IMPLEMENTATION: Census 2 supports multiple input file formats including MS1/MS2, DTASelect, mzXML and pepXML. It requires JAVA version 6 or later to run. Free download of Census 2 for academic users is available at http://fields.scripps.edu/census/index.php. CONTACT: jyates@scripps.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Mass Spectrometry/methods , Proteomics/methods , Statistics as Topic/methods , Animals , Cell Line , Isotope Labeling , Mice , Peptides/analysis , Peptides/chemistry , Proteins/analysis , Proteins/chemistry
12.
Nat Commun ; 15(1): 2441, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499565

ABSTRACT

Lipid synthesis increases during the cell cycle to ensure sufficient membrane mass, but how insufficient synthesis restricts cell-cycle entry is not understood. Here, we identify a lipid checkpoint in G1 phase of the mammalian cell cycle by using live single-cell imaging, lipidome, and transcriptome analysis of a non-transformed cell. We show that synthesis of fatty acids in G1 not only increases lipid mass but extensively shifts the lipid composition to unsaturated phospholipids and neutral lipids. Strikingly, acute lowering of lipid synthesis rapidly activates the PERK/ATF4 endoplasmic reticulum (ER) stress pathway that blocks cell-cycle entry by increasing p21 levels, decreasing Cyclin D levels, and suppressing Retinoblastoma protein phosphorylation. Together, our study identifies a rapid anticipatory ER lipid checkpoint in G1 that prevents cells from starting the cell cycle as long as lipid synthesis is low, thereby preventing mitotic defects, which are triggered by low lipid synthesis much later in mitosis.


Subject(s)
Lipids , Mitosis , Animals , Cell Cycle , G1 Phase , Phosphorylation , Mammals
13.
Parasit Vectors ; 17(1): 36, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281054

ABSTRACT

BACKGROUND: When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS: Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS: Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS: Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.


Subject(s)
Rhipicephalus , Animals , Female , Cattle , Rhipicephalus/physiology , Saliva/chemistry , Proteomics , Arthropod Proteins/metabolism , Salivary Proteins and Peptides/metabolism
14.
J Am Soc Mass Spectrom ; 34(9): 2025-2033, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37527410

ABSTRACT

Differential precipitation of proteins (DiffPOP) is a simple technique for fractionating complex protein mixtures. Using stepwise addition of acidified methanol, ten distinct subsets of proteins can be selectively precipitated by centrifugation and identified by mass spectrometry-based proteomics. We have previously shown that the ability of a protein to resist precipitation can be altered by drug binding, which enabled us to identify a novel drug-target interaction. Here, we show that the addition of DiffPOP to a standard LC-MS proteomics workflow results in a three-dimensional separation of peptides that increases protein coverage and peptide identifications. Importantly, DiffPOP reveals solubility differences between proteoforms, potentially providing valuable insights that are typically lost in bottom-up proteomics.


Subject(s)
Proteins , Proteomics , Proteomics/methods , Peptides , Chromatography, Liquid/methods , Mass Spectrometry
15.
Nat Commun ; 14(1): 7791, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057326

ABSTRACT

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreas/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Fibroblasts/metabolism , Carcinogenesis/pathology , Tumor Microenvironment
16.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745372

ABSTRACT

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.

17.
Cell Rep ; 40(1): 111008, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35793637

ABSTRACT

Compositional oscillations of the gut microbiome are essential for normal peripheral circadian rhythms, both of which are disrupted in diet-induced obesity (DIO). Although time-restricted feeding (TRF) maintains circadian synchrony and protects against DIO, its impact on the dynamics of the cecal gut microbiome is modest. Thus, other regions of the gut, particularly the ileum, the nexus for incretin and bile acid signaling, may play an important role in entraining peripheral circadian rhythms. We demonstrate the effect of diet and feeding rhythms on the ileal microbiome composition and transcriptome in mice. The dynamic rhythms of ileal microbiome composition and transcriptome are dampened in DIO. TRF partially restores diurnal rhythms of the ileal microbiome and transcriptome, increases GLP-1 release, and alters the ileal bile acid pool and farnesoid X receptor (FXR) signaling, which could explain how TRF exerts its metabolic benefits. Finally, we provide a web resource for exploration of ileal microbiome and transcriptome circadian data.


Subject(s)
Microbiota , Transcriptome , Animals , Bile Acids and Salts , Diet , Feeding Behavior , Ileum/metabolism , Mice , Obesity/metabolism , Transcriptome/genetics
18.
Proteomics ; 11(21): 4218-28, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21928397

ABSTRACT

The pharmacological activities displayed by Bothrops jararaca venom undergo a significant ontogenetic shift. Similarly, the diet of this species changes from ectothermic prey in early life to endothermic prey in adulthood. In this study we used large and representative newborn and adult venom samples consisting of pools from 694 and 110 specimens, respectively, and demonstrate a significant ontogenetic shift in the venom proteome complexity of B. jararaca. 2-DE coupled to MS protein identification showed a clear rearrangement of the toxin arsenal both in terms of the total proteome, as of the glycoproteome. N-glycosylation seems to play a key role in venom protein variability between newborn and adult specimens. Upon the snake development, the subproteome of metalloproteinases undergoes a shift from a P-III-rich to a P-I-rich profile while the serine proteinase profile does not vary significantly. We also used isobaric tag labeling (iTRAQ) of venom tryptic peptides for the first time to examine the quantitative changes in the venom toxins of B. jararaca upon neonate to adult transition. The iTRAQ analysis showed changes in various toxin classes, especially the proteinases. Our study expands the in-depth understanding of venom complexity variation particularly with regard to toxin families that have been associated with envenomation pathogenesis.


Subject(s)
Bothrops/growth & development , Crotalid Venoms/metabolism , Proteome/metabolism , Reptilian Proteins/metabolism , Animals , Bothrops/metabolism , Glycosylation , Mass Spectrometry , Proteomics
19.
J Cell Biol ; 220(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34132745

ABSTRACT

Photoreceptors rely on distinct membrane compartments to support their specialized function. Unlike protein localization, identification of critical differences in membrane content has not yet been expanded to lipids, due to the difficulty of isolating domain-specific samples. We have overcome this by using SMA to coimmunopurify membrane proteins and their native lipids from two regions of photoreceptor ROS disks. Each sample's copurified lipids were subjected to untargeted lipidomic and fatty acid analysis. Extensive differences between center (rhodopsin) and rim (ABCA4 and PRPH2/ROM1) samples included a lower PC to PE ratio and increased LC- and VLC-PUFAs in the center relative to the rim region, which was enriched in shorter, saturated FAs. The comparatively few differences between the two rim samples likely reflect specific protein-lipid interactions. High-resolution profiling of the ROS disk lipid composition gives new insights into how intricate membrane structure and protein activity are balanced within the ROS, and provides a model for future studies of other complex cellular structures.


Subject(s)
Cell Membrane/metabolism , Eye Proteins/metabolism , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Retinal Rod Photoreceptor Cells/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Cattle , Cell Membrane/ultrastructure , Eye Proteins/immunology , Lipidomics , Membrane Proteins/immunology , Mice, Inbred BALB C , Mice, Knockout , Microscopy, Electron, Transmission , Nanotechnology , Peripherins/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Rhodopsin/metabolism , Single-Domain Antibodies/immunology , Tetraspanins/metabolism
20.
Geroscience ; 43(5): 2139-2148, 2021 10.
Article in English | MEDLINE | ID: mdl-34370163

ABSTRACT

Understanding basic mechanisms of aging holds great promise for developing interventions that prevent or delay many age-related declines and diseases simultaneously to increase human healthspan. However, a major confounding factor in aging research is the heterogeneity of the aging process itself. At the organismal level, it is clear that chronological age does not always predict biological age or susceptibility to frailty or pathology. While genetics and environment are major factors driving variable rates of aging, additional complexity arises because different organs, tissues, and cell types are intrinsically heterogeneous and exhibit different aging trajectories normally or in response to the stresses of the aging process (e.g., damage accumulation). Tackling the heterogeneity of aging requires new and specialized tools (e.g., single-cell analyses, mass spectrometry-based approaches, and advanced imaging) to identify novel signatures of aging across scales. Cutting-edge computational approaches are then needed to integrate these disparate datasets and elucidate network interactions between known aging hallmarks. There is also a need for improved, human cell-based models of aging to ensure that basic research findings are relevant to human aging and healthspan interventions. The San Diego Nathan Shock Center (SD-NSC) provides access to cutting-edge scientific resources to facilitate the study of the heterogeneity of aging in general and to promote the use of novel human cell models of aging. The center also has a robust Research Development Core that funds pilot projects on the heterogeneity of aging and organizes innovative training activities, including workshops and a personalized mentoring program, to help investigators new to the aging field succeed. Finally, the SD-NSC participates in outreach activities to educate the general community about the importance of aging research and promote the need for basic biology of aging research in particular.


Subject(s)
Frailty , Geroscience , Aging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL