Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Bioorg Med Chem Lett ; 94: 129454, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37591316

ABSTRACT

Activation of the glucagon-like peptide-1 (GLP-1) receptor stimulates insulin release, lowers plasma glucose levels, delays gastric emptying, increases satiety, suppresses food intake, and affords weight loss in humans. These beneficial attributes have made peptide-based agonists valuable tools for the treatment of type 2 diabetes mellitus and obesity. However, efficient, and consistent delivery of peptide agents generally requires subcutaneous injection, which can reduce patient utilization. Traditional orally absorbed small molecules for this target may offer improved patient compliance as well as the opportunity for co-formulation with other oral therapeutics. Herein, we describe an SAR investigation leading to small-molecule GLP-1 receptor agonists that represent a series that parallels the recently reported clinical candidate danuglipron. In the event, identification of a benzyloxypyrimidine lead, using a sensitized high-throughput GLP-1 agonist assay, was followed by optimization of the SAR using substituent modifications analogous to those discovered in the danuglipron series. A new series of 6-azaspiro[2.5]octane molecules was optimized into potent GLP-1 agonists. Information gleaned from cryogenic electron microscope structures was used to rationalize the SAR of the optimized compounds.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , High-Throughput Screening Assays , Hypoglycemic Agents/pharmacology , Octanes/chemistry , Octanes/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology
2.
Bioorg Med Chem Lett ; 92: 129394, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37379958

ABSTRACT

Our previous work on the optimization of a new class of small molecule PCSK9 mRNA translation inhibitors focused on empirical optimization of the amide tail region of the lead PF-06446846 (1). This work resulted in compound 3 that showed an improved safety profile. We hypothesized that this improvement was related to diminished binding of 3 to non-translating ribosomes and an apparent improvement in transcript selectivity. Herein, we describe our efforts to further optimize this series of inhibitors through modulation of the heterocyclic head group and the amine fragment. Some of the effort was guided by an emerging cryo electron microscopy structure of the binding mode of 1 in the ribosome. These efforts led to the identification of 15 that was deemed suitable for evaluation in a humanized PCSK9 mouse model and a rat toxicology study. Compound 15 demonstrated a dose dependent reduction of plasma PCSK9 levels. The rat toxicological profile was not improved over that of 1, which precluded 15 from further consideration as a clinical candidate.

3.
Bioorg Med Chem Lett ; 93: 129433, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37557923

ABSTRACT

The α7 nicotinic acetylcholine receptor is a calcium permeable, ligand-gated ion channel that modulates synaptic transmission in the hippocampus, thalamus, and cerebral cortex. Previously disclosed work described PNU-120596 that acts as a powerful positive allosteric modulator of the α7 nicotinic acetylcholine receptor. The initial structure-activity relationships around PNU-120596 were gleaned from screening a large thiazole library. Independent systematic examination of the aryl and heteroaryl groups resulted in compounds with enhanced potency and improved physico-chemical properties culminating in the identification of 16 (PHA-758454). In the presence of acetylcholine, 16 enhanced evoked currents in rat hippocampal neurons. In a rat model of impaired sensory gating, treatment with 16 led to a reversal of the gating deficit in a dose-dependent manner. These results demonstrate that aryl heteroaryl ureas, like compound 16, may be useful tools for continued exploration of the unique biology of the α7 nicotinic acetylcholine receptor.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , Rats , Animals , Hippocampus , Phenylurea Compounds/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemistry , Allosteric Regulation
5.
J Org Chem ; 86(10): 7189-7202, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33974415

ABSTRACT

Non-enzymatic dynamic kinetic resolution (DKR) of secondary alcohols by enantioselective acylation using an isothiourea-derived HyperBTM catalyst and racemization of slowly reacting alcohol by Bäckvall's ruthenium complex is reported. The DKR approach features high enantioselectivities (up to 99:1), employs easy-to-handle crystalline 4-nitrophenyl isobutyrate as the acylating reagent, and proceeds at room temperature and under an ambient atmosphere. The stereoinduction model featuring cation-π system interactions between the acylated HyperBTM catalyst and π electrons of an alcohol aryl subunit has been elaborated by DFT calculations.


Subject(s)
Ruthenium , Alcohols , Catalysis , Kinetics , Stereoisomerism
6.
PLoS Biol ; 15(3): e2001882, 2017 03.
Article in English | MEDLINE | ID: mdl-28323820

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts.


Subject(s)
Protein Biosynthesis/drug effects , Ribosomes/drug effects , Animals , Cell Line , Cell-Free System , Cholesterol/blood , Escherichia coli/genetics , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Mass Spectrometry , Molecular Targeted Therapy , Proprotein Convertase 9/blood , Proprotein Convertase 9/genetics , Protein Biosynthesis/physiology , Rabbits , Rats , Rats, Sprague-Dawley , Ribosomes/metabolism , Ribosomes/physiology
7.
Angew Chem Int Ed Engl ; 59(31): 12998-13003, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32285542

ABSTRACT

Preparative reactions that occur efficiently under dilute, buffered, aqueous conditions in the presence of biomolecules find application in ligation, peptide synthesis, and polynucleotide synthesis and sequencing. However, the identification of functional groups or reagents that are mutually reactive with one another, but unreactive with biopolymers and water, is challenging. Shown here are cobalt catalysts that react with alkenes under dilute, aqueous, buffered conditions and promote efficient cycloisomerization and formal Friedel-Crafts reactions. The constraining conditions of bioorthogonal chemistry are beneficial for reaction efficiency as superior conversion at low catalyst concentration is obtained and competent rates in dilute conditions are maintained. Efficiency at high dilution in the presence of buffer and nucleobases suggests that these reaction conditions may find broad application.


Subject(s)
Alkenes/chemistry , Water/chemistry , Catalysis , Cobalt/chemistry , Coordination Complexes/chemistry , Cyclization , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemical synthesis , Isomerism
8.
Angew Chem Int Ed Engl ; 59(19): 7377-7383, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32050046

ABSTRACT

DNA encoded libraries (DEL) have shown promise as a valuable technology for democratizing the hit discovery process. Although DEL provides relatively inexpensive access to libraries of unprecedented size, their production has been hampered by the idiosyncratic needs of the encoding DNA tag relegating DEL compatible chemistry to dilute aqueous environments. Recently reversible adsorption to solid support (RASS) has been demonstrated as a promising method to expand DEL reactivity using standard organic synthesis protocols. Here we demonstrate a suite of on-DNA chemistries to incorporate medicinally relevant and C-S, C-P and N-S linkages into DELs, which are underrepresented in the canonical methods.


Subject(s)
DNA/chemical synthesis , Adsorption , Chemistry Techniques, Synthetic , Combinatorial Chemistry Techniques , Drug Discovery , Indicators and Reagents , Small Molecule Libraries , Solubility , Sulfones/chemistry , Sulfoxides/chemistry
9.
J Am Chem Soc ; 141(25): 9998-10006, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31136164

ABSTRACT

DNA Encoded Libraries have proven immensely powerful tools for lead identification. The ability to screen billions of compounds at once has spurred increasing interest in DEL development and utilization. Although DEL provides access to libraries of unprecedented size and diversity, the idiosyncratic and hydrophilic nature of the DNA tag severely limits the scope of applicable chemistries. It is known that biomacromolecules can be reversibly, noncovalently adsorbed and eluted from solid supports, and this phenomenon has been utilized to perform synthetic modification of biomolecules in a strategy we have described as reversible adsorption to solid support (RASS). Herein, we present the adaptation of RASS for a DEL setting, which allows reactions to be performed in organic solvents at near anhydrous conditions opening previously inaccessible chemical reactivities to DEL. The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions. The utility of these reactions was demonstrated through a DEL-rehearsal in which all newly developed chemistries were orchestrated to afford a compound rich in diverse skeletal linkages. We believe that RASS will offer expedient access to new DEL reactivities, expanded chemical space, and ultimately more drug-like libraries.


Subject(s)
Aniline Compounds/chemical synthesis , Combinatorial Chemistry Techniques/methods , DNA/chemistry , Piperidines/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Proof of Concept Study
10.
Bioorg Med Chem Lett ; 28(23-24): 3685-3688, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30482620

ABSTRACT

A series of N-(piperidin-3-yl)-N-(pyridin-2-yl)piperidine/piperazine-1-carboxamides were identified as small molecule PCSK9 mRNA translation inhibitors. Analogues from this new chemical series, such as 4d and 4g, exhibited improved PCSK9 potency, ADME properties, and in vitro safety profiles when compared to earlier lead structures.


Subject(s)
Amides/chemistry , PCSK9 Inhibitors , Piperidines/chemistry , Protease Inhibitors/chemistry , Amides/metabolism , Amides/pharmacology , Animals , Cell Membrane Permeability/drug effects , Crystallography, X-Ray , Dogs , Humans , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Molecular Conformation , Proprotein Convertase 9/metabolism , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Structure-Activity Relationship
11.
J Org Chem ; 82(2): 869-886, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28060519

ABSTRACT

A new catalyst for the dynamic kinetic resolution of azole hemiaminals has been developed using late-stage structural modifications of the tert-leucinol-derived chiral subunit of DMAP species.

12.
Angew Chem Int Ed Engl ; 56(51): 16218-16222, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29073340

ABSTRACT

Targeting of the human ribosome is an unprecedented therapeutic modality with a genome-wide selectivity challenge. A liver-targeted drug candidate is described that inhibits ribosomal synthesis of PCSK9, a lipid regulator considered undruggable by small molecules. Key to the concept was the identification of pharmacologically active zwitterions designed to be retained in the liver. Oral delivery of the poorly permeable zwitterions was achieved by prodrugs susceptible to cleavage by carboxylesterase 1. The synthesis of select tetrazole prodrugs was crucial. A cell-free in vitro translation assay containing human cell lysate and purified target mRNA fused to a reporter was used to identify active zwitterions. In vivo PCSK9 lowering by oral dosing of the candidate prodrug and quantification of the drug fraction delivered to the liver utilizing an oral positron emission tomography 18 F-isotopologue validated our liver-targeting approach.


Subject(s)
Liver/drug effects , PCSK9 Inhibitors , Proprotein Convertase 9/biosynthesis , Small Molecule Libraries/pharmacology , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/enzymology , Liver/metabolism , Molecular Structure , Proprotein Convertase 9/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
13.
J Am Chem Soc ; 138(14): 4818-23, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27003237

ABSTRACT

We report a modular three-component dynamic kinetic resolution (DKR) that affords enantiomerically enriched hemiaminal esters derived from azoles and aldehydes. The novel and scalable reaction can be used to synthesize valuable substituted azoles in a regioselective manner by capping (e.g., acylation) of the equilibrating azole-aldehyde adduct. With the use of a prolinol-derived DMAP catalyst as the chiral Lewis base, the products can be obtained in high chemical yield and with high enantiomeric excess. The DKR was performed on a multikilogram scale to produce a tetrazole prodrug fragment for a leading clinical candidate that posed formidable synthesis challenges.


Subject(s)
Azoles/chemical synthesis , Esters/chemical synthesis , Lewis Bases/chemistry , Aldehydes/chemistry , Alkanesulfonates/chemical synthesis , Alkanesulfonates/chemistry , Azoles/chemistry , Catalysis , Esters/chemistry , Kinetics , Stereoisomerism , Tetrazoles
15.
Bioorg Med Chem Lett ; 23(23): 6239-42, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24157365

ABSTRACT

Hit-to-lead medicinal chemistry efforts are described starting from a screening hit 1, leading to a new class of aryl sulfonamide-based MR antagonist, exemplified by 17, that possesses favourable MR binding affinity, selectivity profile against closely related NHRs, physicochemical properties and metabolic stability.


Subject(s)
Mineralocorticoid Receptor Antagonists/chemistry , Mineralocorticoid Receptor Antagonists/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Humans , Mineralocorticoid Receptor Antagonists/chemical synthesis , Models, Molecular , Structure-Activity Relationship , Sulfonamides/chemical synthesis
16.
Bioorg Med Chem Lett ; 23(5): 1407-11, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23337601

ABSTRACT

Optimization of a high-throughput screening hit led to the discovery of a new series of 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides as highly potent agonists of TGR5. This novel chemotype was rapidly developed through iterative combinatorial library synthesis. It was determined that in vitro agonist potency correlated with functional activity data from human peripheral blood monocytes.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Receptors, G-Protein-Coupled/agonists , Amides/chemistry , Combinatorial Chemistry Techniques , Humans , Pyrazoles/chemistry , Structure-Activity Relationship
17.
Angew Chem Int Ed Engl ; 52(40): 10607-10, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23956102

ABSTRACT

Two regioselective and complementary hydroarylation reactions of an unsymmetrical cyclic olefin have been developed. The products can be transformed in one step into constrained γ-amino acids. Regioselective arylation of Vince lactam is controlled by the choice of phosphine ligand enantiomer and the substituent on the amide nitrogen atom. The method was extended to a general regiodivergent parallel kinetic resolution of the racemic lactam.


Subject(s)
Lactams/chemistry , Organometallic Compounds/chemistry , Catalysis , Kinetics , Models, Molecular , Molecular Structure , Stereoisomerism
18.
Drug Metab Dispos ; 40(11): 2143-61, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22896728

ABSTRACT

The disposition of 3,3-difluoropyrrolidin-1-yl{(2S,4S)-4-[4-(pyrimidin-2-yl)piperazin-1-yl]pyrrolidin-2-yl}methanone (PF-00734200), a dipeptidyl peptidase IV inhibitor that progressed to phase 3 for the treatment of type 2 diabetes, was examined in rats, dogs, and humans after oral administration of a single dose of [(14)C]PF-00734200. Mean recoveries of administered radioactivity were 97.1, 92.2, and 87.2% in rats, dogs, and humans, respectively. The majority of radioactive dose was detected in the urine of dogs and humans and in the feces of rats. Absorption of PF-00734200 was rapid in all species, with maximal plasma concentrations of radioactivity achieved within 1 h after the dose. Circulating radioactivity was primarily composed of the parent drug (79.9, 80.2, and 94.4% in rat, dog, and human, respectively). The major route of metabolism was due to hydroxylation at the 5' position of the pyrimidine ring (M5) in all species. In vitro experiments with recombinant cytochrome P450 isoforms suggested that the formation of M5 was catalyzed both by CYP2D6 and CYP3A4. Molecular docking simulations showed that the 5' position of the pyrimidine moiety of PF-00734200 can access the heme iron-oxo of both CYP3A4 and CYP2D6 in an energetically favored orientation. Other metabolic pathways included amide hydrolysis (M2), N-dealkylation at the piperazine nitrogen (M3) and an unusual metabolite resulting from scission of the pyrimidine ring (M1). Phase II metabolic pathways included the following: carbamoyl glucuronidation (M9), glucosidation (M15) on the pyrrolidine nitrogen, and conjugation with creatinine to form an unusual metabolite/metabonate (M16). The data from these studies suggest that PF-00734200 is eliminated by both metabolism and renal clearance.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Pyrimidines/metabolism , Pyrrolidines/metabolism , Amides/metabolism , Animals , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/urine , Dipeptidyl-Peptidase IV Inhibitors/urine , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Dogs , Feces/chemistry , Female , Humans , Hydrolysis/drug effects , Hydroxylation/drug effects , Male , Metabolic Detoxication, Phase II , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Docking Simulation/methods , Piperazine , Piperazines/metabolism , Pyrimidines/pharmacokinetics , Pyrrolidines/pharmacokinetics , Rats , Rats, Sprague-Dawley
19.
J Med Chem ; 65(12): 8208-8226, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35647711

ABSTRACT

Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) have revolutionized diabetes therapy, but their use has been limited because they require injection. Herein, we describe the discovery of the orally bioavailable, small-molecule, GLP-1R agonist PF-06882961 (danuglipron). A sensitized high-throughput screen was used to identify 5-fluoropyrimidine-based GLP-1R agonists that were optimized to promote endogenous GLP-1R signaling with nanomolar potency. Incorporation of a carboxylic acid moiety provided considerable GLP-1R potency gains with improved off-target pharmacology and reduced metabolic clearance, ultimately resulting in the identification of danuglipron. Danuglipron increased insulin levels in primates but not rodents, which was explained by receptor mutagensis studies and a cryogenic electron microscope structure that revealed a binding pocket requiring a primate-specific tryptophan 33 residue. Oral administration of danuglipron to healthy humans produced dose-proportional increases in systemic exposure (NCT03309241). This opens an opportunity for oral small-molecule therapies that target the well-validated GLP-1R for metabolic health.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Animals , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Hypoglycemic Agents/pharmacology , Peptides/chemistry
20.
J Transl Med ; 9: 180, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22017794

ABSTRACT

BACKGROUND: Accumulating evidence supports the role of the mineralocorticoid receptor (MR) in the pathogenesis of diabetic nephropathy. These findings have generated renewed interest in novel MR antagonists with improved selectivity against other nuclear hormone receptors and a potentially reduced risk of hyperkalemia. Characterization of novel MR antagonists warrants establishing translatable biomarkers of activity at the MR receptor. We assessed the translatability of urinary sodium to potassium ratio (Na+/K+) and plasma aldosterone as biomarkers of MR antagonism using eplerenone (Inspra®), a commercially available MR antagonist. Further we utilized these biomarkers to demonstrate antagonism of MR by PF-03882845, a novel compound. METHODS: The effect of eplerenone and PF-03882845 on urinary Na+/K+ and plasma aldosterone were characterized in Sprague-Dawley rats and spontaneously hypertensive rats (SHR). Additionally, the effect of eplerenone on these biomarkers was determined in healthy volunteers. Drug exposure-response data were modeled to evaluate the translatability of these biomarkers from rats to humans. RESULTS: In Sprague-Dawley rats, eplerenone elicited a rapid effect on urinary Na+/K+ yielding an EC50 that was within 5-fold of the functional in vitro IC50. More importantly, the effect of eplerenone on urinary Na+/K+ in healthy volunteers yielded an EC50 that was within 2-fold of the EC50 generated in Sprague-Dawley rats. Similarly, the potency of PF-03882845 in elevating urinary Na+/K+ in Sprague-Dawley rats was within 3-fold of its in vitro functional potency. The effect of MR antagonism on urinary Na+/K+ was not sustained chronically; thus we studied the effect of the compounds on plasma aldosterone following chronic dosing in SHR. Modeling of drug exposure-response data for both eplerenone and PF-03882845 yielded EC50 values that were within 2-fold of that estimated from modeling of drug exposure with changes in urinary sodium and potassium excretion. Importantly, similar unbound concentrations of eplerenone in humans and SHR rats yielded the same magnitude of elevations in aldosterone, indicating a good translatability from rat to human. CONCLUSIONS: Urinary Na+/K+ and plasma aldosterone appear to be translatable biomarkers of MR antagonism following administration of single or multiple doses of compound, respectively. TRIAL REGISTRATION: For clinical study reference EE3-96-02-004, this study was completed in 1996 and falls out scope for disclosure requirements. Clinical study reference A6141115: http://clinicaltrials.gov, http://NIHclinicaltrails.gov; NCTID: NCT00990223.


Subject(s)
Aldosterone/blood , Mineralocorticoid Receptor Antagonists , Potassium/urine , Sodium/urine , Translational Research, Biomedical , Adult , Animals , Area Under Curve , Biomarkers/blood , Biomarkers/urine , Cell Line, Tumor , Eplerenone , Humans , Male , Rats , Rats, Sprague-Dawley , Receptors, Mineralocorticoid/metabolism , Spironolactone/administration & dosage , Spironolactone/analogs & derivatives , Spironolactone/pharmacology , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL