ABSTRACT
Metabolic syndrome is a complex human disorder characterized by a cluster of conditions (increased blood pressure, hyperglycemia, excessive body fat around the waist, and abnormal cholesterol or triglyceride levels). Any of these conditions increases the risk of serious disorders such as diabetes or cardiovascular disease. Currently, the degree of genetic regulation of this syndrome is under debate and partially unknown. The principal aim of this study was to estimate the genetic component and the common environmental effects in different populations using full pedigree and genomic information. We used three large populations (Gubbio, ARIC, and Ogliastra cohorts) to estimate the heritability of metabolic syndrome. Due to both pedigree and genotyped data, different approaches were applied to summarize relatedness conditions. Linear mixed models (LLM) using average information restricted maximum likelihood (AIREML) algorithm were applied to partition the variances and estimate heritability (h2) and common sib-household effect (c2). Globally, results obtained from pedigree information showed a significant heritability (h2: 0.286 and 0.271 in Gubbio and Ogliastra, respectively), whereas a lower, but still significant heritability was found using SNPs data ([Formula: see text]: 0.167 and 0.254 in ARIC and Ogliastra). The remaining heritability between h2 and [Formula: see text] ranged between 0.031 and 0.237. Finally, the common environmental c2 in Gubbio and Ogliastra were also significant accounting for about 11% of the phenotypic variance. Availability of different kinds of populations and data helped us to better understand what happened when heritability of metabolic syndrome is estimated and account for different possible confounding. Furthermore, the opportunity of comparing different results provided more precise and less biased estimation of heritability.
Subject(s)
Genetic Predisposition to Disease , Genetics, Population/methods , Genome, Human , Genome-Wide Association Study , Genomics/methods , Metabolic Syndrome/genetics , Polymorphism, Single Nucleotide , Cohort Studies , Female , Genotype , Humans , Male , Models, Genetic , PedigreeABSTRACT
Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79 x 10(-13)), rs74506613 (JMJD1C, P = 1.17 x 10(-19)), rs4782371 (ZFPM1, P = 1.59 x 10(-9)) and rs2639990 (ZADH2, P = 1.72 x 10(-8)), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52 x 10(-18); rs7043199, VLDLR-AS1, P = 5.12 x 10(-14)) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39 x 10(-1467); rs1740073, C6orf223, P = 2.34 x 10(-17); rs6993770, ZFPM2, P = 2.44 x 10(-60); rs2375981, KCNV2, P = 1.48 x 10(-100)). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases.
Subject(s)
Genetic Loci , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/genetics , Chromosomes, Human , Gene Expression , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/metabolism , White People/geneticsABSTRACT
Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies (n=22,653 and n=6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 (P=4.2 × 10-53), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 (P=6.6 × 10-17), rs219779 adjacent to CLDN14 (P=3.5 × 10-16), rs4443100 near RTDR1 (P=8.7 × 10-9), and rs73186030 near CASR (P=4.8 × 10-8). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued.
Subject(s)
Genetic Variation , Parathyroid Hormone/blood , Parathyroid Hormone/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Europe , Female , Genome-Wide Association Study , Humans , Male , Middle AgedABSTRACT
Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium- and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E-10 and rs7032430, P = 2.39E-09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P < 0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.
Subject(s)
Cadherins/genetics , Genome-Wide Association Study/methods , Hearing/physiology , Membrane Transport Proteins/genetics , Nerve Tissue Proteins/genetics , Animals , Asia, Central , Cadherins/metabolism , Deafness/genetics , Genetic Predisposition to Disease , Hair Cells, Auditory, Inner/metabolism , Hearing/genetics , Humans , Italy , Membrane Transport Proteins/metabolism , Mice , Nerve Tissue Proteins/metabolism , Protocadherins , Sequence Analysis, RNA/methodsABSTRACT
Visual refractive errors (REs) are complex genetic traits with a largely unknown etiology. To date, genome-wide association studies (GWASs) of moderate size have identified several novel risk markers for RE, measured here as mean spherical equivalent (MSE). We performed a GWAS using a total of 7280 samples from five cohorts: the Age-Related Eye Disease Study (AREDS); the KORA study ('Cooperative Health Research in the Region of Augsburg'); the Framingham Eye Study (FES); the Ogliastra Genetic Park-Talana (OGP-Talana) Study and the Multiethnic Study of Atherosclerosis (MESA). Genotyping was performed on Illumina and Affymetrix platforms with additional markers imputed to the HapMap II reference panel. We identified a new genome-wide significant locus on chromosome 16 (rs10500355, P = 3.9 × 10(-9)) in a combined discovery and replication set (26 953 samples). This single nucleotide polymorphism (SNP) is located within the RBFOX1 gene which is a neuron-specific splicing factor regulating a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins.
Subject(s)
Genome-Wide Association Study , RNA Splicing , RNA-Binding Proteins/genetics , Refractive Errors/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Organ Specificity/genetics , Polymorphism, Single Nucleotide , RNA Isoforms/genetics , RNA Splicing Factors , Young AdultABSTRACT
To identify genetic variants associated with refractive astigmatism in the general population, meta-analyses of genome-wide association studies were performed for: White Europeans aged at least 25 years (20 cohorts, N = 31,968); Asian subjects aged at least 25 years (7 cohorts, N = 9,295); White Europeans aged <25 years (4 cohorts, N = 5,640); and all independent individuals from the above three samples combined with a sample of Chinese subjects aged <25 years (N = 45,931). Participants were classified as cases with refractive astigmatism if the average cylinder power in their two eyes was at least 1.00 diopter and as controls otherwise. Genome-wide association analysis was carried out for each cohort separately using logistic regression. Meta-analysis was conducted using a fixed effects model. In the older European group the most strongly associated marker was downstream of the neurexin-1 (NRXN1) gene (rs1401327, P = 3.92E-8). No other region reached genome-wide significance, and association signals were lower for the younger European group and Asian group. In the meta-analysis of all cohorts, no marker reached genome-wide significance: The most strongly associated regions were, NRXN1 (rs1401327, P = 2.93E-07), TOX (rs7823467, P = 3.47E-07) and LINC00340 (rs12212674, P = 1.49E-06). For 34 markers identified in prior GWAS for spherical equivalent refractive error, the beta coefficients for genotype versus spherical equivalent, and genotype versus refractive astigmatism, were highly correlated (r = -0.59, P = 2.10E-04). This work revealed no consistent or strong genetic signals for refractive astigmatism; however, the TOX gene region previously identified in GWAS for spherical equivalent refractive error was the second most strongly associated region. Analysis of additional markers provided evidence supporting widespread genetic co-susceptibility for spherical and astigmatic refractive errors.
Subject(s)
Astigmatism/genetics , Cell Adhesion Molecules, Neuronal/genetics , Genome-Wide Association Study , High Mobility Group Proteins/genetics , Nerve Tissue Proteins/genetics , Adult , Age Factors , Asian People , Astigmatism/pathology , Calcium-Binding Proteins , Cohort Studies , Female , Genetic Markers , Humans , Male , Middle Aged , Neural Cell Adhesion Molecules , White PeopleABSTRACT
In contrast to large GWA studies based on thousands of individuals and large meta-analyses combining GWAS results, we analyzed a small case/control sample for uric acid nephrolithiasis. Our cohort of closely related individuals is derived from a small, genetically isolated village in Sardinia, with well-characterized genealogical data linking the extant population up to the 16(th) century. It is expected that the number of risk alleles involved in complex disorders is smaller in isolated founder populations than in more diverse populations, and the power to detect association with complex traits may be increased when related, homogeneous affected individuals are selected, as they are more likely to be enriched with and share specific risk variants than are unrelated, affected individuals from the general population. When related individuals are included in an association study, correlations among relatives must be accurately taken into account to ensure validity of the results. A recently proposed association method uses an empirical genotypic covariance matrix estimated from genome-screen data to allow for additional population structure and cryptic relatedness that may not be captured by the genealogical data. We apply the method to our data, and we also investigate the properties of the method, as well as other association methods, in our highly inbred population, as previous applications were to outbred samples. The more promising regions identified in our initial study in the genetic isolate were then further investigated in an independent sample collected from the Italian population. Among the loci that showed association in this study, we observed evidence of a possible involvement of the region encompassing the gene LRRC16A, already associated to serum uric acid levels in a large meta-analysis of 14 GWAS, suggesting that this locus might lead a pathway for uric acid metabolism that may be involved in gout as well as in nephrolithiasis.
Subject(s)
Carrier Proteins/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Nephrolithiasis/genetics , Uric Acid/metabolism , Case-Control Studies , Cohort Studies , Data Interpretation, Statistical , Genetic Loci , Gout/genetics , Humans , Italy , Microfilament Proteins , Pedigree , Polymorphism, Single Nucleotide , Uric Acid/bloodABSTRACT
BACKGROUND: Hearing is a complex trait, but until now only a few genes are known to contribute to variability of this process. In order to discover genes and pathways that underlie auditory function, a genome-wide association study was carried out within the International Consortium G-EAR. METHODS: Meta-analysis of genome-wide association study's data from six isolated populations of European ancestry for an overall number of 3417 individuals. RESULTS: Eight suggestive significant loci (p<10(-7)) were detected with a series of genes expressed within the inner ear such as: DCLK1, PTPRD, GRM8, CMIP. Additional biological candidates marked by a single nucleotide polymorphism (SNP) with a suggestive association (p<10(-6)) were identified, as well as loci encompassing 'gene desert regions'-genes of unknown function or genes whose function has not be linked to hearing so far. Some of these new loci map to already known hereditary hearing loss loci whose genes still need to be identified. Data have also been used to construct a highly significant 'in silico' pathway for hearing function characterised by a network of 49 genes, 34 of which are certainly expressed in the ear. CONCLUSION: These results provide new insights into the molecular basis of hearing function and may suggest new targets for hearing impairment treatment and prevention.
Subject(s)
Founder Effect , Genome-Wide Association Study/methods , Hearing Loss/genetics , Hearing/genetics , White People/genetics , Adaptor Proteins, Signal Transducing , Animals , Auditory Threshold , Carrier Proteins/genetics , Databases, Genetic , Doublecortin-Like Kinases , Europe/epidemiology , Female , Genetic Linkage , Hearing Loss/ethnology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Phenotype , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptors, Metabotropic Glutamate/geneticsABSTRACT
This study aimed at estimating the prevalence of osteoporosis and osteopenia in a Sardinian isolated population using hand quantitative ultrasound and at investigating the associated factors. The authors utilized a subset of data from a large population-based epidemiologic survey carried out in the Ogliastra region of Sardinia between 2003 and 2008. The sample consists of 6,326 men and women aged ≥30 years, who underwent quantitative ultrasound at the phalanges, bioelectrical impedance, anthropometric measurements, blood tests, and a standardized epidemiologic questionnaire collecting sociodemographic, lifestyle, medical, physiologic, and pharmacologic data. The T-score thresholds for amplitude-dependent speed of sound of -3.2 standard deviations and between -3.2 and -1 standard deviations were used to diagnose osteoporosis and osteopenia, respectively. Prevalence of osteoporosis was 17.0% in women and 5.2% in men. Logistic regression analysis revealed that factors associated with osteoporosis were age, anthropometric and bioimpedance measures, alkaline phosphatase levels, and menopause in women. High education, exercise, and beer consumption seem to be protective factors, whereas a family history of osteoporosis is a risk factor. Results show that osteoporosis in this population is comparable with that found in different countries, suggesting that quantitative ultrasound could be used more widely to detect high-risk individuals for preventing osteoporotic fractures.
Subject(s)
Bone Diseases, Metabolic/diagnostic imaging , Bone Diseases, Metabolic/epidemiology , Osteoporosis/diagnostic imaging , Osteoporosis/epidemiology , Adult , Aged , Aged, 80 and over , Anthropometry , Bone Density , Chi-Square Distribution , Cross-Sectional Studies , Electric Impedance , Female , Humans , Italy/epidemiology , Logistic Models , Male , Middle Aged , Prevalence , Risk Factors , Surveys and Questionnaires , UltrasonographyABSTRACT
BACKGROUND: Thrombocytopenia is a common finding in several diseases but almost nothing is known about the prevalence of thrombocytopenia in the general population. We examined the prevalence of thrombocytopenia and determinants of platelet count in a healthy population with a wide age range. DESIGN AND METHODS: We performed a cross-sectional study on 12,517 inhabitants of ten villages (80% of residents) in a secluded area of Sardinia (Ogliastra). Participants underwent a complete blood count evaluation and a structured questionnaire, used to collect epidemiological data. RESULTS: We observed a platelet count lower than 150 × 109/L in 3.2% (2.8%-3.6%) of females and 4.8% (4.3%-5.4%) of males, with a value of 3.9% (3.6%-4.3%) in the entire population. Thrombocytopenia was mild (platelet count: 100 × 109/L-150 × 109/L), asymptomatic and not associated with other cytopenias or overt disorders in most cases. Its standardized prevalence was quite different in different villages, with values ranging from 1.5% to 6.8%, and was negatively correlated with the prevalence of a mild form of thrombocytosis, which ranged from 0.9% to 4.5%. Analysis of platelet counts across classes of age revealed that platelet number decreased progressively with aging. As a consequence, thrombocytopenia was nearly absent in young people and its prevalence increased regularly during lifetime. The opposite occurred for thrombocytosis. CONCLUSIONS: Given the high genetic differentiation among Ogliastra villages with "high" and "low" platelet counts and the substantial heritability of this quantitative trait (54%), we concluded that the propensity to present mild and transient thrombocytosis in youth and to acquire mild thrombocytopenia during aging are new genetic traits.
Subject(s)
Genetic Predisposition to Disease , Thrombocytopenia/genetics , Thrombocytosis/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Italy/epidemiology , Male , Middle Aged , Platelet Count , Prevalence , Prognosis , Risk Factors , Thrombocytopenia/epidemiology , Thrombocytosis/epidemiology , Young AdultABSTRACT
BACKGROUND: Association studies consist in identifying the genetic variants which are related to a specific disease through the use of statistical multiple hypothesis testing or segregation analysis in pedigrees. This type of studies has been very successful in the case of Mendelian monogenic disorders while it has been less successful in identifying genetic variants related to complex diseases where the insurgence depends on the interactions between different genes and the environment. The current technology allows to genotype more than a million of markers and this number has been rapidly increasing in the last years with the imputation based on templates sets and whole genome sequencing. This type of data introduces a great amount of noise in the statistical analysis and usually requires a great number of samples. Current methods seldom take into account gene-gene and gene-environment interactions which are fundamental especially in complex diseases. In this paper we propose to use a non-parametric additive model to detect the genetic variants related to diseases which accounts for interactions of unknown order. Although this is not new to the current literature, we show that in an isolated population, where the most related subjects share also most of their genetic code, the use of additive models may be improved if the available genealogical tree is taken into account. Specifically, we form a sample of cases and controls with the highest inbreeding by means of the Hungarian method, and estimate the set of genes/environmental variables, associated with the disease, by means of Random Forest. RESULTS: We have evidence, from statistical theory, simulations and two applications, that we build a suitable procedure to eliminate stratification between cases and controls and that it also has enough precision in identifying genetic variants responsible for a disease. This procedure has been successfully used for the beta-thalassemia, which is a well known Mendelian disease, and also to the common asthma where we have identified candidate genes that underlie to the susceptibility of the asthma. Some of such candidate genes have been also found related to common asthma in the current literature. CONCLUSIONS: The data analysis approach, based on selecting the most related cases and controls along with the Random Forest model, is a powerful tool for detecting genetic variants associated to a disease in isolated populations. Moreover, this method provides also a prediction model that has accuracy in estimating the unknown disease status and that can be generally used to build kit tests for a wide class of Mendelian diseases.
Subject(s)
Genetic Variation , Genome-Wide Association Study/methods , Inbreeding , Models, Genetic , Animals , Asthma/genetics , Computer Simulation , Genetic Predisposition to Disease , Humans , Models, Statistical , beta-Thalassemia/geneticsABSTRACT
Isolated founder populations which exhibit great genetic and environmental homogeneity provide an attractive setting for the study of quantitative traits (QTs). Geneticists have repeatedly turned to population isolates and the past successes have prompted increased interest among medical researchers. We studied nine small isolated villages of a secluded area of Sardinia (Ogliastra), all of them characterized by a few founders, high endogamy rates, slow population expansion and a distinct genetic makeup. Anthropometric and blood parameters, 43 QTs in all, were analysed in about 9000 voluntary subjects for whom extended genealogical information was available. We explored the distribution and examined mean differences of each trait among villages by analysis of variance (ANOVA). A heritability analysis with the variance component (VC) method was performed. Results show significant differences in the distribution of most traits between groups of villages located in two distinct geographical areas already identified by a previous population structure analysis, thus supporting the existence of differentiation among sub-populations in the same region. Heritability estimates range between 30 and 89%, demonstrating that genetic effects substantially contribute to phenotypic variation of all investigated traits and that this population provides excellent research conditions for gene-mapping projects. Results suggest that history, geographic location and population structure may have influenced the genetic and phenotypic features of these isolates. Our findings may be useful for the ongoing linkage and association studies in these isolates and suggest that a thorough characterization of population is valuable to better identify genes or variants that may be rare in the population at large and peculiar to single villages.
Subject(s)
Genetics, Population , Quantitative Trait, Heritable , Rural Population , Analysis of Variance , Anthropometry/methods , Blood Proteins/genetics , Child , Cross-Sectional Studies , DNA/genetics , Environment , Female , Genetic Variation , Geography , Humans , Italy , Male , Phenotype , Thalassemia/geneticsABSTRACT
BACKGROUND: A multiplicity of study designs such as gene candidate analysis, genome wide search (GWS) and, recently, whole genome association studies have been employed for the identification of the genetic components of essential hypertension (EH). Several genome-wide linkage studies of EH and blood pressure-related phenotypes demonstrate that there is no single locus with a major effect while several genomic regions likely to contain EH-susceptibility loci were validated by multiple studies. METHODS: We carried out the clinical assessment of the entire adult population in a Sardinian village (Talana) and we analyzed 16 selected families with 62 hypertensive subjects out of 267 individuals. We carried out a double GWS using a set of 902 uniformly spaced microsatellites and a high-density SNPs map on the same group of families. RESULTS: Three loci were identified by both microsatellites and SNP scans and the obtained linkage results showed a remarkable degree of similarity. These loci were identified on chromosome 2q24, 11q23.1-25 and 13q14.11-21.33. Further support to these findings is their broad description present in literature associated to EH or related phenotypes. Bioinformatic investigation of these loci shows several potential EH candidate genes, several of whom already associated to blood pressure regulation pathways. CONCLUSION: Our search for major susceptibility EH genetic factors evidences that EH in the genetic isolate of Talana is due to the contribution of several genes contained in loci identified and replicated by earlier findings in different human populations.
Subject(s)
Hypertension/genetics , Lod Score , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Italy , Male , Middle Aged , PedigreeABSTRACT
OBJECTIVE: In isolated populations, 'background' linkage disequilibrium (LD) has been shown to extend over large genetic distances. This and their reduced environmental and genetic heterogeneity has stimulated interest in their potential for association mapping. We compared LD unit map distances with pair-wise measurements of LD in a dense single nucleotide polymorphism (SNP) set. METHODS: We genotyped 771 SNPs in an 8 Mb segment of chromosome 22 on 101 individuals from the isolated village of Talana, Sardinia, and compared with outbred European populations. RESULTS: Heterozygosity was remarkably similar in both populations. In contrast, the extent of LD observed was quite different. The decay of LD with distance is slower in the isolate. The differences in LD map lengths suggest that useful LD extends up to three times farther in the Sardinian population; smaller differences are seen with pairwise LD metrics. While LD map length slightly decreases with average relatedness, cryptic relatedness does not explain the decrease in LD map length. Haplotypes, block boundaries, and patterns of LD are similar in both populations, suggesting a shared distribution of recombination hotspots. CONCLUSIONS: About 15% fewer haplotype tagging SNPs need to be genotyped in the isolate, and possibly 70% fewer if selecting SNPs evenly spaced on the metric LD map.
Subject(s)
Genetic Markers , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Chromosomes, Human, Pair 22 , Haplotypes , Heterozygote , Humans , ItalyABSTRACT
Age-related hearing loss (ARHL) is the most common sensory disorder in the elderly. Although not directly life threatening, it contributes to loss of autonomy and is associated with anxiety, depression and cognitive decline. To search for genetic risk factors underlying ARHL, a large whole-genome sequencing (WGS) approach has been carried out in a cohort of 212 cases and controls, both older than 50 years to select genes characterized by a burden of variants specific to cases or controls. Accordingly, the total variation load per gene was compared and two groups were detected: 375 genes more variable in cases and 371 more variable in controls. In both cases, Gene Ontology analysis showed that the largest enrichment for biological processes (fold > 5, p-value = 0.042) was the "sensory perception of sound", suggesting cumulative genetic effects were involved. Replication confirmed 141 genes, while additional analysis based on natural selection led to a prioritization of 21 genes. The majority of them (20 out of 21) showed positive expression in mouse cochlea cDNA and were associated with two functional pathways. Among them, two genes were previously associated with hearing (CSMD1 and PTRPD) and re-sequenced in a large Italian cohort of ARHL patients (N = 389). Results led to the identification of six coding variants not detected in cases so far, suggesting a possible protective role, which requires investigation. In conclusion, we show that this multistep strategy (WGS, selection, expression, pathway analysis and targeted re-sequencing) can provide major insights into the molecular characterization of complex diseases such as ARHL.
Subject(s)
Genetic Pleiotropy , Multifactorial Inheritance , Presbycusis/genetics , Selection, Genetic , Aged , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Genetic , Whole Genome SequencingABSTRACT
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.
Subject(s)
Educational Status , Environment , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Refractive Errors/genetics , Asian People/genetics , Gene Expression Profiling , Humans , Polymorphism, Single Nucleotide/genetics , White People/geneticsABSTRACT
BACKGROUND: In our studies of genetically isolated populations in a remote mountain area in the center of Sardinia (Italy), we found that 80-85% of the inhabitants of each village belong to a single huge pedigree with families strictly connected to each other through hundreds of loops. Moreover, intermarriages between villages join pedigrees of different villages through links that make family trees even more complicated. Unfortunately, none of the commonly used pedigree drawing tools are able to draw the complete pedigree, whereas it is commonly accepted that the visual representation of families is very important as it helps researchers in identifying clusters of inherited traits and genotypes. We had a representation issue that compels researchers to work with subsets extracted from the overall genealogy, causing a serious loss of information on familiar relationships. To visually explore such complex pedigrees, we developed PedNavigator, a browser for genealogical databases properly suited for genetic studies. RESULTS: The PedNavigator is useful for genealogical research due to its capacity to represent family relations between persons and to make a visual verification of the links during family history reconstruction. As for genetic studies, it is helpful to follow propagation of a specific set of genetic markers (haplotype), or to select people for linkage analysis, showing relations between various branch of a family tree of affected subjects. AVAILABILITY: PedNavigator is an application integrated into a Framework designed to handle data for human genetic studies based on the Oracle platform. To allow the use of PedNavigator also to people not owning the same required informatics infrastructure or systems, we developed PedNavigator Lite with mainly the same features of the integrated one, based on MySQL database server. This version is free for academic users, and it is available for download from our site http://www.shardna.com.
Subject(s)
Computational Biology/methods , Genetics, Population/methods , Algorithms , Chromosome Mapping , Computer Graphics , Database Management Systems , Databases, Genetic , Female , Genetic Linkage , Genetic Markers , Humans , Information Storage and Retrieval , Internet , Italy , Linkage Disequilibrium , Male , Models, Genetic , Pedigree , Population , Population Groups , Programming Languages , Software , User-Computer InterfaceABSTRACT
The metabolic syndrome (MetS) is a large-scale and expanding public-health and clinical threat worldwide. We investigated the determinants of MetS, assessed its prevalence and components and, estimated their genetic contribution, taking advantage of the special characteristics of Sardinian isolated populations. Inhabitants of 10 villages in Ogliastra region participated in a cross-sectional survey in 2002-2008 (n = 9,647). Blood samples, blood pressure (BP), anthropometry and, data from a standardized interview were collected. Prevalence of MetS was estimated by the direct method of standardization. Variables associated with the MetS were identified using multilevel logistic regression. Heritability was determined using variance component models. MetS Prevalence was 19.6% (95% CI 18.9-20.4%) according to NCEP-ATPIII, 24.8% (95% CI 24.0-25.6%) according to IDF and, 29% (95% CI 28.1-29.8%) according to AHA/NHLBI harmonized criteria, ranging from 9 to 26% among villages. The most prevalent combination was BP + HDL-cholesterol (HDL) + triglycerides (TRIG) (19%), followed by BP + HDL + waist circumference (WAIST) (17%) and, BP + HDL + TRIG + WAIST (13.6%). Heritability of MetS was 48% (p = 1.62 × 10(-25)), as the two most common combinations (BP + HDL + TRIG and BP + HDL + WAIST) showed heritability of 53 and 52%, respectively. The larger genetic components of the two most frequent combinations determining MetS deserve greater investigation in order to understand the underlying mechanisms. Besides, further studies are warranted to confirm these findings both in isolated and outbred populations.
ABSTRACT
Recently, we identified a susceptibility locus for human uric acid nephrolithiasis (UAN) on 10q21-q22 and demonstrated that a novel gene (ZNF365) included in this region produces through alternative splicing several transcripts coding for four protein isoforms. Mutation analysis showed that one of them (Talanin) is associated with UAN. We examined the evolutionary conservation of ZNF365 gene through a comparative genomic approach. Searching for mouse homologs of ZNF365 transcripts, we identified a highly conserved mouse ortholog of ZNF365A transcript, expressed specifically in brain. We did not found a mouse homolog for ZNF365D transcript encoding the Talanin protein, even if we were able to identify the corresponding genomic region in mouse and rat not yet organized in canonical gene structure suggesting that ZNF365D was originated after the branching of hominoid from rodent lineage. In mouse and in most mammals, a functional uricase degrades the uric acid to allantoin, but uricase activity was lost during the Miocene epoch in hominoids. Searching for the presence of Talanin in Primates, we found a canonical intron-exon structure with several stop codons preventing protein production in Old World and New World monkeys. In humans, we observe expression and we have evidence that ZNF365D transcript produces a functional protein. It seems therefore that ZNF365D transcript emerged during primate evolution from a noncoding genomic sequence that evolved in a standard gene structure and assumed its role in parallel with the disappearance of uricase, probably against a disadvantageous excessive hyperuricemia.
Subject(s)
DNA-Binding Proteins/genetics , Kidney Diseases/genetics , Transcription Factors/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Base Sequence , Chromosomes, Human, Pair 10/genetics , Chromosomes, Mammalian/genetics , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Evolution, Molecular , Humans , Kidney Diseases/blood , Kidney Diseases/pathology , Mice , Molecular Sequence Data , Phylogeny , Primates/genetics , Protein Isoforms/genetics , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Synteny , Uric Acid/blood , Zinc Fingers/geneticsABSTRACT
We sequenced to near completion the entire mtDNA of 28 Sardinian goats, selected to represent the widest possible diversity of the most widespread mitochondrial evolutionary lineage, haplogroup (Hg) A. These specimens were reporters of the diversity in the island but also elsewhere, as inferred from their affiliation to each of 11 clades defined by D-loop variation. Two reference sequences completed the dataset. Overall, 206 variations were found in the full set of 30 sequences, of which 23 were protein-coding non-synonymous single nucleotide substitutions. Many polymorphic sites within Hg A were informative for the reconstruction of its internal phylogeny. Bayesian and network clustering revealed a general similarity over the entire molecule of sequences previously assigned to the same D-loop clade, indicating evolutionarily meaningful lineages. Two major sister groupings emerged within Hg A, which parallel distinct geographical distributions of D-loop clades in extant stocks. The pattern of variation in protein-coding genes revealed an overwhelming role of purifying selection, with the quota of surviving variants approaching neutrality. However, a simple model of relaxation of selection for the bulk of variants here reported should be rejected. Non-synonymous diversity of Hg's A, B and C denoted that a proportion of variants not greater than that allowed in the wild was given the opportunity to spread into domesticated stocks. Our results also confirmed that a remarkable proportion of pre-existing Hg A diversity became incorporated into domestic stocks. Our results confirm clade A11 as a well differentiated and ancient lineage peculiar of Sardinia.