Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brain ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753057

ABSTRACT

Deubiquitination is critical for the proper functioning of numerous biological pathways such as DNA repair, cell cycle progression, transcription, signal transduction, and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and GeneMatching, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia, and distinctive facial characteristics including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set posteriorly rotated ears. In order to assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic ND.

2.
EMBO J ; 39(23): e105364, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33128823

ABSTRACT

Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.


Subject(s)
Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/metabolism , Adolescent , Cell Line , DNA, Mitochondrial/genetics , Female , Gene Expression , Humans , Infant , Male , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , Pedigree , Proteomics , Quadriceps Muscle/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
3.
Eur J Neurol ; 31(5): e16216, 2024 May.
Article in English | MEDLINE | ID: mdl-38247216

ABSTRACT

BACKGROUND AND PURPOSE: Identifying vestibular causes of dizziness and unsteadiness in multi-sensory neurological disease can be challenging, with problems typically attributed to central or peripheral nerve involvement. Acknowledging vestibular dysfunction as part of the presentation provides an opportunity to access targeted vestibular rehabilitation, for which extensive evidence exists. A diagnostic framework was developed and validated to detect vestibular dysfunction, benign paroxysmal positional vertigo or vestibular migraine. The specificity and sensitivity of the diagnostic framework was tested in patients with primary mitochondrial disease. METHODS: Adults with a confirmed diagnosis of primary mitochondrial disease were consented, between September 2020 and February 2022. Participants with and without dizziness or unsteadiness underwent remote physiotherapy assessment and had in-person detailed neuro-otological assessment. The six framework question responses were compared against objective neuro-otological assessment or medical notes. The output was binary, with sensitivity and specificity calculated. RESULTS: Seventy-four adults completed the study: age range 20-81 years (mean 48 years, ±SD 15.05 years); ratio 2:1 female to male. The framework identified a vestibular diagnosis in 35 participants, with seven having two diagnoses. The framework was able to identify vestibular diagnoses in adults with primary mitochondrial disease, with a moderate (40-59) to very high (90-100) sensitivity and positive predictive value, and moderate to high (60-74) to very high (90-100) specificity and negative predictive value. CONCLUSIONS: Overall, the clinical framework identified common vestibular diagnoses with a moderate to very high specificity and sensitivity. This presents an opportunity for patients to access effective treatment in a timely manner, to reduce falls and improve quality of life.


Subject(s)
Migraine Disorders , Mitochondrial Diseases , Vestibular Diseases , Adult , Humans , Male , Female , Young Adult , Middle Aged , Aged , Aged, 80 and over , Dizziness/diagnosis , Dizziness/etiology , Quality of Life , Vertigo/diagnosis , Vertigo/complications , Migraine Disorders/diagnosis , Migraine Disorders/complications , Mitochondrial Diseases/complications , Mitochondrial Diseases/diagnosis , Vestibular Diseases/diagnosis , Vestibular Diseases/complications , Benign Paroxysmal Positional Vertigo/complications
4.
Eur J Neurol ; 30(2): 399-412, 2023 02.
Article in English | MEDLINE | ID: mdl-36303290

ABSTRACT

BACKGROUND AND PURPOSE: Clinical outcome information on patients with neuromuscular diseases (NMDs) who have been infected with SARS-CoV-2 is limited. The aim of this study was to determine factors associated with the severity of COVID-19 outcomes in people with NMDs. METHODS: Cases of NMD, of any age, and confirmed/presumptive COVID-19, submitted to the International Neuromuscular COVID-19 Registry up to 31 December 2021, were included. A mutually exclusive ordinal COVID-19 severity scale was defined as follows: (1) no hospitalization; (2) hospitalization without oxygenation; (3) hospitalization with ventilation/oxygenation; and (4) death. Multivariable ordinal logistic regression analyses were used to estimate odds ratios (ORs) for severe outcome, adjusting for age, sex, race/ethnicity, NMD, comorbidities, baseline functional status (modified Rankin scale [mRS]), use of immunosuppressive/immunomodulatory medication, and pandemic calendar period. RESULTS: Of 315 patients from 13 countries (mean age 50.3 [±17.7] years, 154 [48.9%] female), 175 (55.5%) were not hospitalized, 27 (8.6%) were hospitalized without supplemental oxygen, 91 (28.9%) were hospitalized with ventilation/supplemental oxygen, and 22 (7%) died. Higher odds of severe COVID-19 outcomes were observed for: age ≥50 years (50-64 years: OR 2.4, 95% confidence interval [CI] 1.33-4.31; >64 years: OR 4.16, 95% CI 2.12-8.15; both vs. <50 years); non-White race/ethnicity (OR 1.81, 95% CI 1.07-3.06; vs. White); mRS moderately severe/severe disability (OR 3.02, 95% CI 1.6-5.69; vs. no/slight/moderate disability); history of respiratory dysfunction (OR 3.16, 95% CI 1.79-5.58); obesity (OR 2.24, 95% CI 1.18-4.25); ≥3 comorbidities (OR 3.2, 95% CI 1.76-5.83; vs. ≤2; if comorbidity count used instead of specific comorbidities); glucocorticoid treatment (OR 2.33, 95% CI 1.14-4.78); and Guillain-Barré syndrome (OR 3.1, 95% CI 1.35-7.13; vs. mitochondrial disease). CONCLUSIONS: Among people with NMDs, there is a differential risk of COVID-19 outcomes according to demographic and clinical characteristics. These findings could be used to develop tailored management strategies and evidence-based recommendations for NMD patients.


Subject(s)
COVID-19 , Neuromuscular Diseases , Humans , Female , Middle Aged , Male , SARS-CoV-2 , Neuromuscular Diseases/epidemiology , Registries , Oxygen
5.
Brain ; 145(2): 542-554, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34927673

ABSTRACT

In this retrospective, multicentre, observational cohort study, we sought to determine the clinical, radiological, EEG, genetics and neuropathological characteristics of mitochondrial stroke-like episodes and to identify associated risk predictors. Between January 1998 and June 2018, we identified 111 patients with genetically determined mitochondrial disease who developed stroke-like episodes. Post-mortem cases of mitochondrial disease (n = 26) were identified from Newcastle Brain Tissue Resource. The primary outcome was to interrogate the clinico-radiopathological correlates and prognostic indicators of stroke-like episode in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). The secondary objective was to develop a multivariable prediction model to forecast stroke-like episode risk. The most common genetic cause of stroke-like episodes was the m.3243A>G variant in MT-TL1 (n = 66), followed by recessive pathogenic POLG variants (n = 22), and 11 other rarer pathogenic mitochondrial DNA variants (n = 23). The age of first stroke-like episode was available for 105 patients [mean (SD) age: 31.8 (16.1)]; a total of 35 patients (32%) presented with their first stroke-like episode ≥40 years of age. The median interval (interquartile range) between first and second stroke-like episodes was 1.33 (2.86) years; 43% of patients developed recurrent stroke-like episodes within 12 months. Clinico-radiological, electrophysiological and neuropathological findings of stroke-like episodes were consistent with the hallmarks of medically refractory epilepsy. Patients with POLG-related stroke-like episodes demonstrated more fulminant disease trajectories than cases of m.3243A>G and other mitochondrial DNA pathogenic variants, in terms of the frequency of refractory status epilepticus, rapidity of progression and overall mortality. In multivariate analysis, baseline factors of body mass index, age-adjusted blood m.3243A>G heteroplasmy, sensorineural hearing loss and serum lactate were significantly associated with risk of stroke-like episodes in patients with the m.3243A>G variant. These factors informed the development of a prediction model to assess the risk of developing stroke-like episodes that demonstrated good overall discrimination (area under the curve = 0.87, 95% CI 0.82-0.93; c-statistic = 0.89). Significant radiological and pathological features of neurodegeneration were more evident in patients harbouring pathogenic mtDNA variants compared with POLG: brain atrophy on cranial MRI (90% versus 44%, P < 0.001) and reduced mean brain weight (SD) [1044 g (148) versus 1304 g (142), P = 0.005]. Our findings highlight the often idiosyncratic clinical, radiological and EEG characteristics of mitochondrial stroke-like episodes. Early recognition of seizures and aggressive instigation of treatment may help circumvent or slow neuronal loss and abate increasing disease burden. The risk-prediction model for the m.3243A>G variant can help inform more tailored genetic counselling and prognostication in routine clinical practice.


Subject(s)
MELAS Syndrome , Mitochondrial Diseases , Stroke , Adult , DNA, Mitochondrial/genetics , Humans , MELAS Syndrome/genetics , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Mutation , Retrospective Studies , Stroke/diagnostic imaging , Stroke/genetics
6.
J Med Ethics ; 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37339848

ABSTRACT

We discuss a case where clinical genomic investigation of muscle weakness unexpectedly found a genetic variant that might (or might not) predispose to kidney cancer. We argue that despite its off-target and uncertain nature, this variant should be discussed with the man who had the test, not because it is medical information, but because this discussion would allow the further clinical evaluation that might lead it to becoming so. We argue that while prominent ethical debates around genomics often take 'results' as a starting point and ask questions as to whether to look for and how to react to them, the construction of genomic results is fraught with ethical complexity, although often couched as a primarily technical problem. We highlight the need for greater focus on, and appreciation of, the ethical work undertaken daily by scientists and clinicians working in genomic medicine and discuss how public conversations around genomics need to adapt to prepare future patients for potentially uncertain and unexpected outcomes from clinical genomic tests.

7.
Ann Neurol ; 89(6): 1240-1247, 2021 06.
Article in English | MEDLINE | ID: mdl-33704825

ABSTRACT

A rapidly expanding catalog of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty-four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases. ANN NEUROL 2021;89:1240-1247.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child, Preschool , Humans , Male , Middle Aged , Exome Sequencing , Young Adult
8.
Trends Analyt Chem ; 157: 116808, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36751553

ABSTRACT

Cardiolipin (CL) is a mitochondria-exclusive phospholipid, primarily localised within the inner mitochondrial membrane, that plays an essential role in mitochondrial architecture and function. Aberrant CL content, structure, and localisation have all been linked to impaired mitochondrial activity and are observed in the pathophysiology of cancer and neurological, cardiovascular, and metabolic disorders. The detection, quantification, and localisation of CL species is a valuable tool to investigate mitochondrial dysfunction and the pathophysiological mechanisms underpinning several human disorders. CL is measured using liquid chromatography, usually combined with mass spectrometry, mass spectrometry imaging, shotgun lipidomics, ion mobility spectrometry, fluorometry, and radiolabelling. This review summarises available methods to analyse CL, with a particular focus on modern mass spectrometry, and evaluates their advantages and limitations. We provide guidance aimed at selecting the most appropriate technique, or combination of techniques, when analysing CL in different model systems, and highlight the clinical contexts in which measuring CL is relevant.

10.
Hum Mol Genet ; 28(16): 2711-2719, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31039582

ABSTRACT

Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient's fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect.


Subject(s)
Mitochondria/genetics , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Proteins/genetics , Mutation , Protein Biosynthesis , Ribosomal Proteins/genetics , Adult , Biomarkers , Fibroblasts/metabolism , Genetic Predisposition to Disease , Homozygote , Humans , Magnetic Resonance Imaging , Male , Mitochondria/metabolism , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/metabolism , Models, Biological , Pedigree , Phenotype , Exome Sequencing
11.
J Inherit Metab Dis ; 44(1): 22-41, 2021 01.
Article in English | MEDLINE | ID: mdl-32618366

ABSTRACT

Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.


Subject(s)
Clinical Trials as Topic , Mitochondrial Diseases/therapy , Animals , Cell Transplantation , DNA, Mitochondrial/genetics , Dietary Supplements , Exercise Therapy , Free Radical Scavengers/therapeutic use , Genetic Therapy , Humans , Hypoxia/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Replacement Therapy , Mutation , Oxidative Phosphorylation , RNA, Transfer/genetics
12.
Mol Biol Rep ; 48(3): 2093-2104, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33742325

ABSTRACT

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.


Subject(s)
Chromosomes, Human, Pair 2/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Ribosomal Proteins/genetics , Uniparental Disomy/genetics , Adolescent , Base Sequence , Brain/diagnostic imaging , Brain/pathology , Child, Preschool , Female , Fibroblasts/pathology , Homozygote , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Mitochondrial Diseases/pathology , Muscle, Skeletal/metabolism , Mutation/genetics , Oxidative Phosphorylation , Protein Biosynthesis , Young Adult
13.
J Med Internet Res ; 23(5): e25229, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33988522

ABSTRACT

Twitter is a free, open access social media platform that is widely used in medicine by physicians, scientists, and patients. It provides an opportunity for advocacy, education, and collaboration. However, it is likely not utilized to its full advantage by many disciplines in medicine, and pitfalls exist in its use. In particular, there has not been a review of Twitter use and its applications in the field of neurology. This review seeks to provide an understanding of the current use of Twitter in the field of neurology to assist neurologists in engaging with this potentially powerful application to support their work.


Subject(s)
Neurology , Physicians , Social Media , Humans
14.
Ann Neurol ; 86(2): 310-315, 2019 08.
Article in English | MEDLINE | ID: mdl-31187502

ABSTRACT

Distinct clinical syndromes have been associated with pathogenic MT-ATP6 variants. In this cohort study, we identified 125 individuals (60 families) including 88 clinically affected individuals and 37 asymptomatic carriers. Thirty-one individuals presented with Leigh syndrome and 7 with neuropathy ataxia retinitis pigmentosa. The remaining 50 patients presented with variable nonsyndromic features including ataxia, neuropathy, and learning disability. We confirmed maternal inheritance in 39 families and demonstrated that tissue segregation patterns and phenotypic threshold are variant dependent. Our findings suggest that MT-ATP6-related mitochondrial DNA disease is best conceptualized as a mitochondrial disease spectrum disorder and should be routinely included in genetic ataxia and neuropathy gene panels. ANN NEUROL 2019;86:310-315.


Subject(s)
Genetic Variation/genetics , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Mitochondrial Diseases/diagnosis , United Kingdom/epidemiology , Young Adult
15.
J Inherit Metab Dis ; 43(4): 800-818, 2020 07.
Article in English | MEDLINE | ID: mdl-32030781

ABSTRACT

Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Mitochondria/drug effects , Mitochondrial Diseases/chemically induced , Pharmaceutical Preparations , Consensus , Delphi Technique , Drug Design , Humans , Internationality , Mitochondria/metabolism , Practice Guidelines as Topic , Toxicity Tests
16.
BMC Nephrol ; 21(1): 361, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32838736

ABSTRACT

BACKGROUND: Up to one third of patients on renal replacement programmes have an unknown cause of kidney disease, and the diagnosis may only be established following renal transplantation when the disease recurs or if new extra-renal symptoms develop. CASE PRESENTATION: We present two patients who presented with progressive chronic kidney disease of unknown cause. Both patients underwent successful renal transplantation but subsequently developed multisystem abnormalities, and were ultimately diagnosed with mitochondrial cytopathy 10-15 years following transplantation. CONCLUSIONS: Mitochondrial cytopathies are rare inborn errors of metabolism that should be considered in adults with renal impairment, especially in those with a family history of kidney or other multisystem disease. The widespread availability of genetic testing provides the potential for earlier diagnoses, thereby enhancing management decisions, anticipation of complications, avoidance of mitotoxic drugs, and informed prognosis prediction.


Subject(s)
Delayed Diagnosis , Kidney Failure, Chronic/surgery , Kidney Transplantation , Mitochondrial Diseases/diagnosis , Adult , Atrophy , Brain/diagnostic imaging , Brain Diseases/physiopathology , Cognitive Dysfunction/physiopathology , Diabetes Mellitus , Female , Hearing Loss, Sensorineural/physiopathology , Humans , Kidney Failure, Chronic/etiology , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Mitochondrial Proton-Translocating ATPases/genetics , Mutation , Postoperative Complications , Psychotic Disorders/physiopathology , RNA, Transfer, Leu/genetics , Retina/pathology , Retinal Diseases/physiopathology , Young Adult
17.
Neuromodulation ; 23(7): 991-995, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31828902

ABSTRACT

OBJECTIVES: Intrathecal baclofen (ITB) pumps are an effective treatment for spasticity; however infection rates have been reported in 3-26% of patients in the literature. The multidisciplinary ITB service has been established at The National Hospital for Neurology and Neurosurgery, UCLH, Queen Square, London for over 20 years. Our study was designed to clarify the rate of infection in our ITB patient cohort and secondly, to formulate and implement best practice guidelines and to determine prospectively, whether they effectively reduced infection rates. METHODS: Clinical record review of all patients receiving ITB pre-intervention; January 2013-May 2015, and following practice changes; June 2016-June 2018. RESULTS: Four of 118 patients receiving ITB during the first time period (3.4%, annual incidence rate of infection 1.4%) developed an ITB-related infection (three following ITB pump replacement surgery, one after initial implant). Infections were associated with 4.2% of ITB-related surgical procedures. Three of four pumps required explantation. Following change in practice (pre-operative chlorhexidine skin wash and intraoperative vancomycin wash of the fibrous pocket of the replacement site), only one of 160 ITB patients developed infection (pump not explanted) in the second time period (0.6%, annual incidence rate 0.3%). The infection rate related to ITB surgical procedures was 1.1%. In cases of ITB pump replacement, the infection rate was reduced to 3.3% from 17.6%. CONCLUSIONS: This study suggests that a straightforward change in clinical practice may lower infection rates in patients undergoing ITB therapy.


Subject(s)
Baclofen , Infections , Infusion Pumps, Implantable/adverse effects , Injections, Spinal , Muscle Relaxants, Central , Muscle Spasticity , Baclofen/adverse effects , Humans , Infections/etiology , Muscle Relaxants, Central/adverse effects , Muscle Spasticity/drug therapy , Retrospective Studies , Treatment Outcome
18.
Hum Genet ; 138(11-12): 1313-1322, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31673819

ABSTRACT

Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins presented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.


Subject(s)
Mutation , Pyruvate Dehydrogenase (Lipoamide)/genetics , Pyruvate Dehydrogenase Complex Deficiency Disease/genetics , Pyruvate Dehydrogenase Complex Deficiency Disease/pathology , X Chromosome Inactivation , Female , Humans , Male , Pedigree , Phenotype , Prognosis , Pyruvate Dehydrogenase (Lipoamide)/deficiency , Twins, Monozygotic
19.
J Neurol Neurosurg Psychiatry ; 90(11): 1270-1275, 2019 11.
Article in English | MEDLINE | ID: mdl-31171583

ABSTRACT

Identifying effective disease-modifying therapies for neurological diseases remains an important challenge in drug discovery and development. Drug repurposing attempts to determine new indications for pre-existing compounds and represents a major opportunity to address this clinically unmet need. It is potentially more cost-effective and time-efficient than de novo drug development and has yielded notable successes in neurological disorders. However, across all medical disciplines, only 30% of repurposed drugs, and 10% of novel candidate molecules, gain market approval. One potentially significant contributor towards this limited success rate is an incomplete knowledge of the exposure-response relationships for the compounds of interest, and how these relate to the new indication, prior to commencing a new trial. We provide an overview of the current approach to early-stage drug repurposing and consider the issues contributing to inconclusive, or possibly falsely negative, Phase II and III trial outcomes in neurological diseases by highlighting examples that illustrate the limitations of empirical evidence generation without a strong scientific basis for the dose rationale. We conclude with a framework suggesting a translational, iterative approach, that integrates pharmacological, pharmaceutical and clinical expertise, towards preclinical and early clinical drug development. This ensures appropriate dosing regimen, route of administration and/or formulation are selected for the new indication before their evaluation in prospective clinical trials.


Subject(s)
Drug Repositioning/methods , Nervous System Diseases/drug therapy , Humans
20.
Proc Natl Acad Sci U S A ; 113(30): E4276-85, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27402764

ABSTRACT

The genetic information in mammalian mitochondrial DNA is densely packed; there are no introns and only one sizeable noncoding, or control, region containing key cis-elements for its replication and expression. Many molecules of mitochondrial DNA bear a third strand of DNA, known as "7S DNA," which forms a displacement (D-) loop in the control region. Here we show that many other molecules contain RNA as a third strand. The RNA of these R-loops maps to the control region of the mitochondrial DNA and is complementary to 7S DNA. Ribonuclease H1 is essential for mitochondrial DNA replication; it degrades RNA hybridized to DNA, so the R-loop is a potential substrate. In cells with a pathological variant of ribonuclease H1 associated with mitochondrial disease, R-loops are of low abundance, and there is mitochondrial DNA aggregation. These findings implicate ribonuclease H1 and RNA in the physical segregation of mitochondrial DNA, perturbation of which represents a previously unidentified disease mechanism.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria/genetics , Mutation , Ribonuclease H/genetics , Animals , Cell Line, Tumor , Cells, Cultured , DNA Replication , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Nucleic Acid Conformation , Ribonuclease H/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL