ABSTRACT
Some microbes display pleomorphism, showing variable cell shapes in a single culture, whereas others differentiate to adapt to changed environmental conditions. The pleomorphic archaeon Haloferax volcanii commonly forms discoid-shaped ('plate') cells in culture, but may also be present as rods, and can develop into motile rods in soft agar, or longer filaments in certain biofilms. Here we report improvement of H. volcanii growth in both semi-defined and complex media by supplementing with eight trace element micronutrients. With these supplemented media, transient development of plate cells into uniformly shaped rods was clearly observed during the early log phase of growth; cells then reverted to plates for the late log and stationary phases. In media prepared with high-purity water and reagents, without supplemental trace elements, rods and other complex elongated morphologies ('pleomorphic rods') were observed at all growth stages of the culture; the highly elongated cells sometimes displayed a substantial tubule at one or less frequently both poles, as well as unusual tapered and highly curved forms. Polar tubules were observed forming by initial mid-cell narrowing or tubulation, causing a dumbbell-like shape, followed by cell division towards one end. Formation of the uniform early log-phase rods, as well as the pleomorphic rods and tubules were dependent on the function of the tubulin-like cytoskeletal protein, CetZ1. Our results reveal the remarkable morphological plasticity of H. volcanii cells in response to multiple culture conditions, and should facilitate the use of this species in further studies of archaeal biology.
Subject(s)
Haloferax volcanii/cytology , Haloferax volcanii/growth & development , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Culture Media/chemistry , Cytoskeleton/genetics , Cytoskeleton/metabolism , Haloferax volcanii/metabolism , Nutrients/analysis , Trace Elements/analysisABSTRACT
OBJECTIVE: To test whether mutations in γ-aminobutyric acid type A receptor (GABAA -R) subunit genes contribute to the etiology of rolandic epilepsy (RE) or its atypical variants (ARE). METHODS: We performed exome sequencing to compare the frequency of variants in 18 GABAA -R genes in 204 European patients with RE/ARE versus 728 platform-matched controls. Identified GABRG2 variants were functionally assessed for protein stability, trafficking, postsynaptic clustering, and receptor function. RESULTS: Of 18 screened GABAA -R genes, we detected an enrichment of rare variants in the GABRG2 gene in RE/ARE patients (5 of 204, 2.45%) in comparison to controls (1 of 723, 0.14%; odds ratio = 18.07, 95% confidence interval = 2.01-855.07, p = 0.0024, pcorr = 0.043). We identified a GABRG2 splice variant (c.549-3T>G) in 2 unrelated patients as well as 3 nonsynonymous variations in this gene (p.G257R, p.R323Q, p.I389V). Functional assessment showed reduced surface expression of p.G257R and decreased GABA-evoked currents for p.R323Q. The p.G257R mutation displayed diminished levels of palmitoylation, a post-translational modification crucial for trafficking of proteins to the cell membrane. Enzymatically raised palmitoylation levels restored the surface expression of the p.G257R variant γ2 subunit. INTERPRETATION: The statistical association and the functional evidence suggest that mutations of the GABRG2 gene may increase the risk of RE/ARE. Restoring the impaired membrane trafficking of some GABRG2 mutations by enhancing palmitoylation might be an interesting therapeutic approach to reverse the pathogenic effect of such mutants.
Subject(s)
Epilepsy, Rolandic/genetics , Lipoylation/genetics , Mutation/genetics , Receptors, GABA-A/genetics , Exome , Female , HEK293 Cells , Humans , Landau-Kleffner Syndrome/genetics , Male , Pedigree , Syndrome , White People/geneticsABSTRACT
Mephedrone (4-methyl-N-methylcathinone) is a psychostimulant that promotes release of monoamines via the high affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). Metabolic breakdown of mephedrone results in bioactive metabolites that act as substrate-type releasers at monoamine transporters and stereospecific metabolism of mephedrone has been reported. This study compared the effects of the enantiomers of the phase-1 metabolites nor-mephedrone, 4-hydroxytolyl-mephedrone (4-OH-mephedrone) and dihydro-mephedrone on (i) DAT, NET and SERT mediated substrate fluxes, (ii) determined their binding affinities towards a battery of monoamine receptors and (iii) examined the relative abundance of the enantiomers in human urine. Each of the enantiomers tested inhibited uptake mediated by DAT, NET and SERT. No marked differences were detected at DAT and NET. However, at SERT, the S-enantiomers of nor-mephedrone and 4-OH-mephedrone were several times more potent than the corresponding R-enantiomers. Moreover, the R-enantiomers were markedly less effective as releasers at SERT. S-nor-mephedrone displayed moderate affinities towards human alpha1A, human 5-HT2A and rat and mouse trace amine-associated receptor 1. These results demonstrate that stereochemistry dictates the pharmacodynamics of the phase-1 metabolites of mephedrone at SERT, but not at DAT and NET, which manifests in marked differences in their relative potencies, i.e. DAT/SERT ratios. Chiral analysis of urine samples demonstrated that nor-mephedrone predominantly exists as the S-enantiomer. Given the asymmetric abundance of the enantiomers in biological samples, these findings may add to our understanding of the subjective effects of administered mephedrone, which indicate pronounced effects on the serotonergic system.