Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Cell ; 178(5): 1115-1131.e15, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442404

ABSTRACT

Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (ßOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes ßOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous ßOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, ßOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through ßOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of ßOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.


Subject(s)
Diet, High-Fat , Ketone Bodies/metabolism , Stem Cells/metabolism , 3-Hydroxybutyric Acid/blood , 3-Hydroxybutyric Acid/pharmacology , Aged, 80 and over , Animals , Cell Differentiation/drug effects , Cell Self Renewal , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxymethylglutaryl-CoA Synthase/deficiency , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Intestines/cytology , Intestines/pathology , Male , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/metabolism , Receptors, Notch/metabolism , Signal Transduction/drug effects , Stem Cells/cytology , Young Adult
2.
Mol Cell ; 74(6): 1123-1137.e6, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31053472

ABSTRACT

Abnormal processing of stressed replication forks by nucleases can cause fork collapse, genomic instability, and cell death. Despite its importance, it is poorly understood how the cell properly controls nucleases to prevent detrimental fork processing. Here, we report a signaling pathway that controls the activity of exonuclease Exo1 to prevent aberrant fork resection during replication stress. Our results indicate that replication stress elevates intracellular Ca2+ concentration ([Ca2+]i), leading to activation of CaMKK2 and the downstream kinase 5' AMP-activated protein kinase (AMPK). Following activation, AMPK directly phosphorylates Exo1 at serine 746 to promote 14-3-3 binding and inhibit Exo1 recruitment to stressed replication forks, thereby avoiding unscheduled fork resection. Disruption of this signaling pathway results in excessive ssDNA, chromosomal instability, and hypersensitivity to replication stress inducers. These findings reveal a link between [Ca2+]i and the replication stress response as well as a function of the Ca2+-CaMKK2-AMPK signaling axis in safeguarding fork structure to maintain genome stability.


Subject(s)
AMP-Activated Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium/metabolism , DNA Repair Enzymes/genetics , DNA Repair , DNA Replication , Exodeoxyribonucleases/genetics , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Calcium Signaling/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Chromatin/chemistry , Chromatin/metabolism , DNA Damage , DNA Repair Enzymes/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Mol Cell ; 71(4): 606-620.e7, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30118680

ABSTRACT

Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1). Furthermore, we discover that AMP-activated protein kinase (AMPK) activated by metformin directly phosphorylates S195 of PD-L1. S195 phosphorylation induces abnormal PD-L1 glycosylation, resulting in its ER accumulation and ER-associated protein degradation (ERAD). Consistently, tumor tissues from metformin-treated breast cancer patients exhibit reduced PD-L1 levels with AMPK activation. Blocking the inhibitory signal of PD-L1 by metformin enhances CTL activity against cancer cells. Our findings identify a new regulatory mechanism of PD-L1 expression through the ERAD pathway and suggest that the metformin-CTLA4 blockade combination has the potential to increase the efficacy of immunotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , B7-H1 Antigen/genetics , CTLA-4 Antigen/genetics , Gene Expression Regulation, Neoplastic , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/immunology , Animals , B7-H1 Antigen/immunology , CTLA-4 Antigen/immunology , Cell Line, Tumor , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Glycosylation , Humans , Mammary Glands, Human/cytology , Mammary Glands, Human/drug effects , Mammary Glands, Human/immunology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred NOD , Phosphorylation , Serine/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
4.
Br J Cancer ; 126(4): 615-627, 2022 03.
Article in English | MEDLINE | ID: mdl-34811508

ABSTRACT

BACKGROUND: Metabolic stress resulting from nutrient deficiency is one of the hallmarks of a growing tumour. Here, we tested the hypothesis that metabolic stress induces breast cancer stem-like cell (BCSC) phenotype in triple-negative breast cancer (TNBC). METHODS: Flow cytometry for GD2 expression, mass spectrometry and Ingenuity Pathway Analysis for metabolomics, bioinformatics, in vitro tumorigenesis and in vivo models were used. RESULTS: Serum/glucose deprivation not only increased stress markers but also enhanced GD2+ BCSC phenotype and function in TNBC cells. Global metabolomics profiling identified upregulation of glutathione biosynthesis in GD2high cells, suggesting a role of glutamine in the BCSC phenotype. Cueing from the upregulation of the glutamine transporters in primary breast tumours, inhibition of glutamine uptake using small-molecule inhibitor V9302 reduced GD2+ cells by 70-80% and BCSC characteristics in TNBC cells. Mechanistic studies revealed inhibition of the mTOR pathway and induction of ferroptosis by V9302 in TNBC cells. Finally, inhibition of glutamine uptake significantly reduced in vivo tumour growth in a TNBC patient-derived xenograft model using NSG (non-obese diabetic/severe combined immunodeficiency with a complete null allele of the IL-2 receptor common gamma chain) mice. CONCLUSION: Here, we show metabolic stress results in GD2+ BCSC phenotype in TNBC and glutamine contributes to GD2+ phenotype, and targeting the glutamine transporters could complement conventional chemotherapy in TNBC.


Subject(s)
Blood Glucose/analysis , Gangliosides/metabolism , Glutamine/metabolism , Neoplastic Stem Cells/metabolism , Small Molecule Libraries/administration & dosage , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Female , Ferroptosis/drug effects , Humans , Metabolomics/methods , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Phenotype , Small Molecule Libraries/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
5.
Proc Natl Acad Sci U S A ; 115(41): E9600-E9609, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30254159

ABSTRACT

BRCA1 is an established breast and ovarian tumor suppressor gene that encodes multiple protein products whose individual contributions to human cancer suppression are poorly understood. BRCA1-IRIS (also known as "IRIS"), an alternatively spliced BRCA1 product and a chromatin-bound replication and transcription regulator, is overexpressed in various primary human cancers, including breast cancer, lung cancer, acute myeloid leukemia, and certain other carcinomas. Its naturally occurring overexpression can promote the metastasis of patient-derived xenograft (PDX) cells and other human cancer cells in mouse models. The IRIS-driven metastatic mechanism results from IRIS-dependent suppression of phosphatase and tensin homolog (PTEN) transcription, which in turn perturbs the PI3K/AKT/GSK-3ß pathway leading to prolyl hydroxylase-independent HIF-1α stabilization and activation in a normoxic environment. Thus, despite the tumor-suppressing genetic origin of IRIS, its properties more closely resemble those of an oncoprotein that, when spontaneously overexpressed, can, paradoxically, drive human tumor progression.


Subject(s)
Alternative Splicing , BRCA1 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism , Signal Transduction , Animals , BRCA1 Protein/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Neoplasms/genetics , Neoplasms/pathology , PTEN Phosphohydrolase/genetics
6.
Breast Cancer Res ; 22(1): 121, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33148288

ABSTRACT

Metaplastic breast cancer (MpBC) is an exceedingly rare breast cancer variant that is therapeutically challenging and aggressive. MpBC is defined by the histological presence of at least two cellular types, typically epithelial and mesenchymal components. This variant harbors a triple-negative breast cancer (TNBC) phenotype, yet has a worse prognosis and decreased survival compared to TNBC. There are currently no standardized treatment guidelines specifically for MpBC. However, prior studies have found that MpBC typically has molecular alterations in epithelial-to-mesenchymal transition, amplification of epidermal growth factor receptor, PI3K/Akt signaling, nitric oxide signaling, Wnt/ß-catenin signaling, altered immune response, and cell cycle dysregulation. Some of these molecular alterations have been studied as therapeutic targets, in both the preclinical and clinical setting. This current review discusses the histological organization and cellular origins of MpBC, molecular alterations, the role of radiation therapy, and current clinical trials for MpBC.


Subject(s)
Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition , Genes, Neoplasm/genetics , Metaplasia/pathology , Triple Negative Breast Neoplasms/pathology , Wnt Signaling Pathway , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cell Line, Tumor , Female , Humans , Metaplasia/genetics , Metaplasia/metabolism , Metaplasia/therapy , Molecular Targeted Therapy/methods , Nitric Oxide Synthase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy
7.
Genes Dev ; 25(13): 1426-38, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21724834

ABSTRACT

Cell cycle regulation in hematopoietic stem cells (HSCs) is tightly controlled during homeostasis and in response to extrinsic stress. p53, a well-known tumor suppressor and transducer of diverse stress signals, has been implicated in maintaining HSC quiescence and self-renewal. However, the mechanisms that control its activity in HSCs, and how p53 activity contributes to HSC cell cycle control, are poorly understood. Here, we use a genetically engineered mouse to show that p53 C-terminal modification is critical for controlling HSC abundance during homeostasis and HSC and progenitor proliferation after irradiation. Preventing p53 C-terminal modification renders mice exquisitely radiosensitive due to defects in HSC/progenitor proliferation, a critical determinant for restoring hematopoiesis after irradiation. We show that fine-tuning the expression levels of the cyclin-dependent kinase inhibitor p21, a p53 target gene, contributes significantly to p53-mediated effects on the hematopoietic system. These results have implications for understanding cell competition in response to stresses involved in stem cell transplantation, recovery from adverse hematologic effects of DNA-damaging cancer therapies, and development of radioprotection strategies.


Subject(s)
Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/radiation effects , Homeostasis/genetics , Radiation Tolerance/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , Gamma Rays , Gene Dosage , Gene Expression Regulation , Gene Knock-In Techniques , Longevity/genetics , Male , Mice , Mice, Inbred C57BL , Mutation , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics
8.
J Mammary Gland Biol Neoplasia ; 23(4): 191-205, 2018 12.
Article in English | MEDLINE | ID: mdl-30194658

ABSTRACT

Ductal carcinoma in situ (DCIS) is a non-invasive proliferative growth in the breast that serves as a non-obligate precursor to invasive ductal carcinoma. The widespread adoption of screening mammography has led to a steep increase in the detection of DCIS, which now comprises approximately 20% of new breast cancer diagnoses in the United States. Interestingly, the intratumoral heterogeneity (ITH) that has been observed in invasive breast cancers may have been established early in tumorigenesis, given the vast and varied ITH that has been detected in DCIS. This review will discuss the intratumoral heterogeneity of DCIS, focusing on the phenotypic and genomic heterogeneity of tumor cells, as well as the compositional heterogeneity of the tumor microenvironment. In addition, we will assess the spatial heterogeneity that is now being appreciated in these lesions, and summarize new approaches to evaluate heterogeneity of tumor and stromal cells in the context of their spatial organization. Importantly, we will discuss how a growing understanding of ITH has led to a more holistic appreciation of the complex biology of DCIS, specifically its evolution and natural history. Finally, we will consider ways in which our knowledge of DCIS ITH might be translated in the future to guide clinical care for DCIS patients.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Animals , Early Detection of Cancer/methods , Female , Humans , Mammography/methods , Tumor Microenvironment/physiology
10.
Nature ; 486(7403): 353-60, 2012 Jun 10.
Article in English | MEDLINE | ID: mdl-22722193

ABSTRACT

To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.


Subject(s)
Aromatase Inhibitors/therapeutic use , Aromatase/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Genome, Human/genetics , Anastrozole , Androstadienes/pharmacology , Androstadienes/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , DNA Repair , Exome/genetics , Exons/genetics , Female , Genetic Variation/genetics , Humans , Letrozole , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase Kinase 1/genetics , Mutation/genetics , Nitriles/pharmacology , Nitriles/therapeutic use , Receptors, Estrogen/metabolism , Treatment Outcome , Triazoles/pharmacology , Triazoles/therapeutic use
11.
Proc Natl Acad Sci U S A ; 112(51): E7148-54, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26644583

ABSTRACT

Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.


Subject(s)
DNA Damage , Fasting/metabolism , Intestine, Small/metabolism , Intestine, Small/pathology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Apoptosis/drug effects , Cell Survival/drug effects , DNA Breaks, Double-Stranded , DNA Repair , Etoposide/administration & dosage , Etoposide/adverse effects , Female , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestine, Small/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology
12.
Cancer Metastasis Rev ; 35(4): 547-573, 2016 12.
Article in English | MEDLINE | ID: mdl-28025748

ABSTRACT

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.


Subject(s)
Breast Neoplasms/pathology , Disease Models, Animal , Animals , Female , Heterografts , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Translational Research, Biomedical
13.
J Biol Chem ; 290(14): 9075-86, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25681442

ABSTRACT

The actin-binding protein profilin-1 (Pfn1) inhibits tumor growth and yet is also required for cell proliferation and survival, an apparent paradox. We previously identified Ser-137 of Pfn1 as a phosphorylation site within the poly-l-proline (PLP) binding pocket. Here we confirm that Ser-137 phosphorylation disrupts Pfn1 binding to its PLP-containing ligands with little effect on actin binding. We find in mouse xenografts of breast cancer cells that mimicking Ser-137 phosphorylation abolishes cell cycle arrest and apoptotic sensitization by Pfn1 and confers a growth advantage to tumors. This indicates a previously unrecognized role of PLP binding in Pfn1 antitumor effects. Spatial restriction of Pfn1 to the nucleus or cytoplasm indicates that inhibition of tumor cell growth by Pfn1 requires its nuclear localization, and this activity is abolished by a phosphomimetic mutation on Ser-137. In contrast, cytoplasmic Pfn1 lacks inhibitory effects on tumor cell growth but rescues morphological and proliferative defects of PFN1 null mouse chondrocytes. These results help reconcile seemingly opposed cellular effects of Pfn1, provide new insights into the antitumor mechanism of Pfn1, and implicate Ser-137 phosphorylation as a potential therapeutic target for breast cancer.


Subject(s)
Genes, Tumor Suppressor , Profilins/metabolism , Serine/metabolism , Subcellular Fractions/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Humans , Phosphorylation , Profilins/chemistry
14.
J Biol Chem ; 290(19): 12300-12, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25833945

ABSTRACT

The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment.


Subject(s)
14-3-3 Proteins/metabolism , DNA Breaks, Double-Stranded , Exodeoxyribonucleases/metabolism , Gene Expression Regulation , Proliferating Cell Nuclear Antigen/metabolism , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Survival , DNA/genetics , DNA Repair , Glutathione Transferase/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Microscopy, Fluorescence , Mutation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Xenopus
15.
J Biol Chem ; 290(24): 15133-45, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25922071

ABSTRACT

The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer.


Subject(s)
Flap Endonucleases/metabolism , Telomere , Blotting, Western , DNA Damage , DNA Replication , Flap Endonucleases/genetics , HEK293 Cells , Humans , In Situ Hybridization, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
16.
Breast Cancer Res ; 18(1): 13, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26818199

ABSTRACT

BACKGROUND: Despite advances in early diagnosis and treatment of cancer patients, metastasis remains the major cause of mortality. TP53 is one of the most frequently mutated genes in human cancer, and these alterations can occur during the early stages of oncogenesis or as later events as tumors progress to more aggressive forms. Previous studies have suggested that p53 plays a role in cellular pathways that govern metastasis. To investigate how p53 deficiency contributes to late-stage tumor growth and metastasis, we developed paired isogenic patient-derived xenograft (PDX) models of triple-negative breast cancer (TNBC) differing only in p53 status for longitudinal analysis. METHODS: Patient-derived isogenic human tumor lines differing only in p53 status were implanted into mouse mammary glands. Tumor growth and metastasis were monitored with bioluminescence imaging, and circulating tumor cells (CTCs) were quantified by flow cytometry. RNA-Seq was performed on p53-deficient and p53 wild-type tumors, and functional validation of a lead candidate gene was performed in vivo. RESULTS: Isogenic p53 wild-type and p53-deficient tumors metastasized out of mammary glands and colonized distant sites with similar frequency. However, p53-deficient tumors metastasized earlier than p53 wild-type tumors and grew faster in both primary and metastatic sites as a result of increased proliferation and decreased apoptosis. In addition, greater numbers of CTCs were detected in the blood of mice engrafted with p53-deficient tumors. However, when normalized to tumor mass, the number of CTCs isolated from mice bearing parental and p53-deficient tumors was not significantly different. Gene expression profiling followed by functional validation identified B cell translocation gene 2 (BTG2), a downstream effector of p53, as a negative regulator of tumor growth both at primary and metastatic sites. BTG2 expression status correlated with survival of TNBC patients. CONCLUSIONS: Using paired isogenic PDX-derived metastatic TNBC cells, loss of p53 promoted tumor growth and consequently increased tumor cell shedding into the blood, thus enhancing metastasis. Loss of BTG2 expression in p53-deficient tumors contributed to this metastatic potential by enhancing tumor growth in primary and metastatic sites. Furthermore, clinical data support conclusions generated from PDX models and indicate that BTG2 expression is a candidate prognostic biomarker for TNBC.


Subject(s)
Cell Proliferation/genetics , Immediate-Early Proteins/biosynthesis , Triple Negative Breast Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/biosynthesis , Animals , Apoptosis/genetics , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Immediate-Early Proteins/genetics , Mice , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays
17.
J Cell Sci ; 127(Pt 2): 315-27, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24259665

ABSTRACT

The establishment and maintenance of cell polarity is an essential property governing organismal homeostasis, and loss of polarity is a common feature of cancer cells. The ability of epithelial cells to establish apical-basal polarity depends on intracellular signals generated from polarity proteins, such as the Par-1 family of proteins, as well as extracellular signals generated through cell contacts with the extracellular matrix (ECM). The Par-1 family has a well-established role in regulating cell-cell contacts in the form of tight junctions by phosphorylating Par-3. In addition, Par-1 has been shown to impact on cell-ECM interactions by regulating laminin receptor localization and laminin deposition on the basal surface of epithelial cells. Laminins are major structural and signaling components of basement membrane (BM), a sheet of specialized ECM underlying epithelia. In this study, we identify RNF41, an E3 ubiquitin ligase, as a novel Par-1b (also known as MARK2) effector in the cell-ECM pathway. Par-1b binds to and phosphorylates RNF41 on serine 254. Phosphorylation of RNF41 by Par-1b is required for epithelial cells to localize laminin-111 receptors to their basolateral surfaces and to properly anchor to laminin-111. In addition, phosphorylation of RNF41 is required for epithelial cells to establish apical-basal polarity. Our data suggests that phosphorylation of RNF41 by Par-1b regulates basolateral membrane targeting of laminin-111 receptors, thereby facilitating cell anchorage to laminin-111 and ultimately forming the cell-ECM contacts required for epithelial cells to establish apical-basal cell polarity.


Subject(s)
Cell Polarity , Epithelial Cells/cytology , Epithelial Cells/enzymology , Protein Serine-Threonine Kinases/metabolism , Cell Polarity/drug effects , Epithelial Cells/drug effects , HEK293 Cells , HeLa Cells , Humans , Immunoprecipitation , Laminin/pharmacology , Models, Biological , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Binding/drug effects , Protein Transport/drug effects , Receptors, Laminin/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism
18.
Cancer Cell ; 13(1): 36-47, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18167338

ABSTRACT

The Cdc25A phosphatase positively regulates cell-cycle transitions, is degraded by the proteosome throughout interphase and in response to stress, and is overproduced in human cancers. The kinases targeting Cdc25A for proteolysis during early cell-cycle phases have not been identified, and mechanistic insight into the cause of Cdc25A overproduction in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3beta (GSK-3beta) phosphorylates Cdc25A to promote its proteolysis in early cell-cycle phases. Phosphorylation by GSK-3beta requires priming of Cdc25A, and this can be catalyzed by polo-like kinase 3 (Plk-3). Importantly, a strong correlation between Cdc25A overproduction and GSK-3beta inactivation was observed in human tumor tissues, indicating that GSK-3beta inactivation may account for Cdc25A overproduction in a subset of human tumors.


Subject(s)
Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3/metabolism , Neoplasms/enzymology , Protein Processing, Post-Translational , Ubiquitin/metabolism , cdc25 Phosphatases/metabolism , Animals , Cell Cycle/radiation effects , Cell Line, Tumor , Checkpoint Kinase 1 , Enzyme Activation/radiation effects , Enzyme Stability/radiation effects , Glycogen Synthase Kinase 3 beta , Humans , Mice , Models, Biological , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/radiation effects , Phosphoserine/metabolism , Phosphothreonine/metabolism , Protein Binding/radiation effects , Protein Kinases/metabolism , Protein Processing, Post-Translational/radiation effects , Radiation, Ionizing , beta-Transducin Repeat-Containing Proteins/metabolism
19.
J Biol Chem ; 288(39): 27999-8008, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23918930

ABSTRACT

Reporter mice that enable the activity of the endogenous p21 promoter to be dynamically monitored in real time in vivo and under a variety of experimental conditions revealed ubiquitous p21 expression in mouse organs including the brain. Low light bioluminescence microscopy was employed to localize p21 expression to specific regions of the brain. Interestingly, p21 expression was observed in the paraventricular, arcuate, and dorsomedial nuclei of the hypothalamus, regions that detect nutrient levels in the blood stream and signal metabolic actions throughout the body. These results suggested a link between p21 expression and metabolic regulation. We found that short-term food deprivation (fasting) potently induced p21 expression in tissues involved in metabolic regulation including liver, pancreas and hypothalamic nuclei. Conditional reporter mice were generated that enabled hepatocyte-specific expression of p21 to be monitored in vivo. Bioluminescence imaging demonstrated that fasting induced a 7-fold increase in p21 expression in livers of reporter mice and Western blotting demonstrated an increase in protein levels as well. The ability of fasting to induce p21 expression was found to be independent of p53 but dependent on FOXO1. Finally, occupancy of the endogenous p21 promoter by FOXO1 was observed in the livers of fasted but not fed mice. Thus, fasting promotes loading of FOXO1 onto the p21 promoter to induce p21 expression in hepatocytes.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Tumor Suppressor Protein p53/metabolism , Adenoviridae/genetics , Alleles , Animals , Female , Food Deprivation , Forkhead Box Protein O1 , Genes, Reporter , Genetic Vectors , Hepatocytes/cytology , Hypothalamus/metabolism , Liver/metabolism , Luminescence , Male , Mice , Promoter Regions, Genetic , Stress, Physiological
20.
Cancer Discov ; 14(8): 1476-1495, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38552003

ABSTRACT

Resistance to poly (ADP-ribose) polymerase inhibitors (PARPi) limits the therapeutic efficacy of PARP inhibition in treating breast cancer susceptibility gene 1 (BRCA1)-deficient cancers. Here we reveal that BRCA1 has a dual role in regulating ferroptosis. BRCA1 promotes the transcription of voltage-dependent anion channel 3 (VDAC3) and glutathione peroxidase 4 (GPX4); consequently, BRCA1 deficiency promotes cellular resistance to erastin-induced ferroptosis but sensitizes cancer cells to ferroptosis induced by GPX4 inhibitors (GPX4i). In addition, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and defective GPX4 induction unleash potent ferroptosis in BRCA1-deficient cancer cells upon PARPi and GPX4i co-treatment. Finally, we show that xenograft tumors derived from patients with BRCA1-mutant breast cancer with PARPi resistance exhibit decreased GPX4 expression and high sensitivity to PARP and GPX4 co-inhibition. Our results show that BRCA1 deficiency induces a ferroptosis vulnerability to PARP and GPX4 co-inhibition and inform a therapeutic strategy for overcoming PARPi resistance in BRCA1-deficient cancers. Significance: BRCA1 deficiency promotes resistance to erastin-induced ferroptosis via blocking VDAC3 yet renders cancer cells vulnerable to GPX4i-induced ferroptosis via inhibiting GPX4. NCOA4 induction and defective GPX4 further synergizes GPX4i with PARPi to induce ferroptosis in BRCA1-deficient cancers and targeting GPX4 mitigates PARPi resistance in those cancers. See related commentary by Alborzinia and Friedmann Angeli, p. 1372.


Subject(s)
BRCA1 Protein , Ferroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Poly(ADP-ribose) Polymerase Inhibitors , Ferroptosis/drug effects , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA1 Protein/genetics , Female , Animals , Mice , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays , Nuclear Receptor Coactivators
SELECTION OF CITATIONS
SEARCH DETAIL