Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Cell ; 145(7): 1075-87, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21683433

ABSTRACT

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Subject(s)
Amino Acids/pharmacology , Biphenyl Compounds/pharmacology , Ubiquitin-Protein Ligase Complexes/antagonists & inhibitors , Allosteric Site , Amino Acid Sequence , Anaphase-Promoting Complex-Cyclosome , DNA Mutational Analysis , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/genetics
2.
J Med Chem ; 63(13): 6648-6676, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32130004

ABSTRACT

Many patients with multiple myeloma (MM) initially respond to treatment with modern combination regimens including immunomodulatory agents (lenalidomide and pomalidomide) and proteasome inhibitors. However, some patients lack an initial response to therapy (i.e., are refractory), and although the mean survival of MM patients has more than doubled in recent years, most patients will eventually relapse. To address this need, we explored the potential of novel cereblon E3 ligase modulators (CELMoDs) for the treatment of patients with relapsed or refractory multiple myeloma (RRMM). We found that optimization beyond potency of degradation, including degradation efficiency and kinetics, could provide efficacy in a lenalidomide-resistant setting. Guided by both phenotypic and protein degradation data, we describe a series of CELMoDs for the treatment of RRMM, culminating in the discovery of CC-92480, a novel protein degrader and the first CELMoD to enter clinical development that was specifically designed for efficient and rapid protein degradation kinetics.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antineoplastic Agents/pharmacology , Multiple Myeloma/drug therapy , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Inhibitory Concentration 50 , Mice , Multiple Myeloma/pathology , Recurrence , Stereoisomerism , Treatment Failure , Ubiquitin-Protein Ligases/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL