Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 404
Filter
Add more filters

Publication year range
1.
Circulation ; 148(15): 1138-1153, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37746744

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is associated with an increased risk of left ventricular dysfunction after aortic valve replacement (AVR) in patients with severe aortic stenosis (AS). Persistent impairments in myocardial energetics and myocardial blood flow (MBF) may underpin this observation. Using phosphorus magnetic resonance spectroscopy and cardiovascular magnetic resonance, this study tested the hypothesis that patients with severe AS and T2D (AS-T2D) would have impaired myocardial energetics as reflected by the phosphocreatine to ATP ratio (PCr/ATP) and vasodilator stress MBF compared with patients with AS without T2D (AS-noT2D), and that these differences would persist after AVR. METHODS: Ninety-five patients with severe AS without coronary artery disease awaiting AVR (30 AS-T2D and 65 AS-noT2D) were recruited (mean, 71 years of age [95% CI, 69, 73]; 34 [37%] women). Thirty demographically matched healthy volunteers (HVs) and 30 patients with T2D without AS (T2D controls) were controls. One month before and 6 months after AVR, cardiac PCr/ATP, adenosine stress MBF, global longitudinal strain, NT-proBNP (N-terminal pro-B-type natriuretic peptide), and 6-minute walk distance were assessed in patients with AS. T2D controls underwent identical assessments at baseline and 6-month follow-up. HVs were assessed once and did not undergo 6-minute walk testing. RESULTS: Compared with HVs, patients with AS (AS-T2D and AS-noT2D combined) showed impairment in PCr/ATP (mean [95% CI]; HVs, 2.15 [1.89, 2.34]; AS, 1.66 [1.56, 1.75]; P<0.0001) and vasodilator stress MBF (HVs, 2.11 mL min g [1.89, 2.34]; AS, 1.54 mL min g [1.41, 1.66]; P<0.0001) before AVR. Before AVR, within the AS group, patients with AS-T2D had worse PCr/ATP (AS-noT2D, 1.74 [1.62, 1.86]; AS-T2D, 1.44 [1.32, 1.56]; P=0.002) and vasodilator stress MBF (AS-noT2D, 1.67 mL min g [1.5, 1.84]; AS-T2D, 1.25 mL min g [1.22, 1.38]; P=0.001) compared with patients with AS-noT2D. Before AVR, patients with AS-T2D also had worse PCr/ATP (AS-T2D, 1.44 [1.30, 1.60]; T2D controls, 1.66 [1.56, 1.75]; P=0.04) and vasodilator stress MBF (AS-T2D, 1.25 mL min g [1.10, 1.41]; T2D controls, 1.54 mL min g [1.41, 1.66]; P=0.001) compared with T2D controls at baseline. After AVR, PCr/ATP normalized in patients with AS-noT2D, whereas patients with AS-T2D showed no improvements (AS-noT2D, 2.11 [1.79, 2.43]; AS-T2D, 1.30 [1.07, 1.53]; P=0.0006). Vasodilator stress MBF improved in both AS groups after AVR, but this remained lower in patients with AS-T2D (AS-noT2D, 1.80 mL min g [1.59, 2.0]; AS-T2D, 1.48 mL min g [1.29, 1.66]; P=0.03). There were no longer differences in PCr/ATP (AS-T2D, 1.44 [1.30, 1.60]; T2D controls, 1.51 [1.34, 1.53]; P=0.12) or vasodilator stress MBF (AS-T2D, 1.48 mL min g [1.29, 1.66]; T2D controls, 1.60 mL min g [1.34, 1.86]; P=0.82) between patients with AS-T2D after AVR and T2D controls at follow-up. Whereas global longitudinal strain, 6-minute walk distance, and NT-proBNP all improved after AVR in patients with AS-noT2D, no improvement in these assessments was observed in patients with AS-T2D. CONCLUSIONS: Among patients with severe AS, those with T2D demonstrate persistent abnormalities in myocardial PCr/ATP, vasodilator stress MBF, and cardiac contractile function after AVR; AVR effectively normalizes myocardial PCr/ATP, vasodilator stress MBF, and cardiac contractile function in patients without T2D.


Subject(s)
Aortic Valve Stenosis , Diabetes Mellitus, Type 2 , Heart Valve Prosthesis Implantation , Humans , Female , Male , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Diabetes Mellitus, Type 2/complications , Ventricular Function, Left/physiology , Vasodilator Agents , Adenosine Triphosphate , Heart Valve Prosthesis Implantation/adverse effects
2.
Magn Reson Med ; 91(4): 1637-1644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041477

ABSTRACT

PURPOSE: Guidelines recommend measuring myocardial extracellular volume (ECV) using T1 -mapping before and 10-30 min after contrast agent administration. Data are then analyzed using a linear model (LM), which assumes fast water exchange (WX) between the ECV and cardiomyocytes. We investigated whether limited WX influences ECV measurements in patients with severe aortic stenosis (AS). METHODS: Twenty-five patients with severe AS and 5 healthy controls were recruited. T1 measurements were made on a 3 T Siemens system using a multiparametric saturation-recovery single-shot acquisition (a) before contrast; (b) 4 min post 0.05 mmol/kg gadobutrol; and (c) 4 min, (d) 10 min, and (e) 30 min after an additional gadobutrol dose (0.1 mmol/kg). Three LM-based ECV estimates, made using paired T1 measurements (a and b), (a and d), and (a and e), were compared to ECV estimates made using all 5 T1 measurements and a two-site exchange model (2SXM) accounting for WX. RESULTS: Median (range) ECV estimated using the 2SXM model was 25% (21%-39%) for patients and 26% (22%-29%) for controls. ECV estimated in patients using the LM at 10 min following a cumulative contrast dose of 0.15 mmol/kg was 21% (17%-32%) and increased significantly to 22% (19%-35%) at 30 min (p = 0.0001). ECV estimated using the LM was highest following low dose gadobutrol, 25% (19%-38%). CONCLUSION: Current guidelines on contrast agent dose for ECV measurements may lead to underestimated ECV in patients with severe AS because of limited WX. Use of a lower contrast agent dose may mitigate this effect.


Subject(s)
Aortic Valve Stenosis , Organometallic Compounds , Humans , Contrast Media , Myocardium , Predictive Value of Tests , Aortic Valve Stenosis/diagnostic imaging , Magnetic Resonance Imaging, Cine
3.
Magn Reson Med ; 91(2): 773-783, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37831659

ABSTRACT

PURPOSE: DTI characterizes tissue microstructure and provides proxy measures of nerve health. Echo-planar imaging is a popular method of acquiring DTI but is susceptible to various artifacts (e.g., susceptibility, motion, and eddy currents), which may be ameliorated via preprocessing. There are many pipelines available but limited data comparing their performance, which provides the rationale for this study. METHODS: DTI was acquired from the upper limb of heathy volunteers at 3T in blip-up and blip-down directions. Data were independently corrected using (i) FSL's TOPUP & eddy, (ii) FSL's TOPUP, (iii) DSI Studio, and (iv) TORTOISE. DTI metrics were extracted from the median, radial, and ulnar nerves and compared (between pipelines) using mixed-effects linear regression. The geometric similarity of corrected b = 0 images and the slice matched T1-weighted (T1w) images were computed using the Sörenson-Dice coefficient. RESULTS: Without preprocessing, the similarity coefficient of the blip-up and blip-down datasets to the T1w was 0·80 and 0·79, respectively. Preprocessing improved the geometric similarity by 1% with no difference between pipelines. Compared to TOPUP & eddy, DSI Studio and TORTOISE generated 2% and 6% lower estimates of fractional anisotropy, and 6% and 13% higher estimates of radial diffusivity, respectively. Estimates of anisotropy from TOPUP & eddy versus TOPUP were not different but TOPUP reduced radial diffusivity by 3%. The agreement of DTI metrics between pipelines was poor. CONCLUSIONS: Preprocessing DTI from the upper limb improves geometric similarity but the choice of the pipeline introduces clinically important variability in diffusion parameter estimates from peripheral nerves.


Subject(s)
Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Humans , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Peripheral Nerves , Upper Extremity/diagnostic imaging , Echo-Planar Imaging , Image Processing, Computer-Assisted/methods
4.
J Magn Reson Imaging ; 59(4): 1258-1266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37491887

ABSTRACT

BACKGROUND: Determination of myocardial blood flow (MBF) with MRI is usually performed with dynamic contrast enhanced imaging (MBFDCE ). MBF can also be determined from coronary sinus blood flow (MBFCS ), which has the advantage of being a noncontrast technique. However, comparative studies of MBFDCE and MBFCS in large cohorts are lacking. PURPOSE: To compare MBFCS and MBFDCE in a large cohort. STUDY TYPE: Prospective, sequence-comparison study. POPULATION: 147 patients with type 2 diabetes mellitus (age: 56+/-12 years; 106 male; diabetes duration: 12.9+/-8.1 years), and 25 age-matched controls. FIELD STRENGTH/SEQUENCES: 1.5 Tesla scanner. Saturation recovery sequence for MBFDCE vs. phase-contrast gradient-echo pulse sequence (free-breathing) for MBFCS . ASSESSMENT: MBFDCE and MBFCS were determined at rest and during coronary dilatation achieved by administration of adenosine at 140 µg/kg/min. Myocardial perfusion reserve (MPR) was calculated as the stress/rest ratio of MBF values. Coronary sinus flow was determined twice in the same imaging session for repeatability assessment. STATISTICAL TESTS: Agreement between MBFDCE and MBFCS was assessed with Bland and Altman's technique. Repeatability was determined from single-rater random intraclass and repeatability coefficients. RESULTS: Rest and stress flows, including both MBFDCE and MBFCS values, ranged from 33 to 146 mL/min/100 g and 92 to 501 mL/min/100 g, respectively. Intraclass and repeatability coefficients for MBFCS were 0.95 (CI 0.90; 0.95) and 5 mL/min/100 g. In Bland-Altman analysis, mean bias at rest was -1.1 mL/min/100 g (CI -3.1; 0.9) with limits of agreement of -27 and 24.8 mL/min/100 g. Mean bias at stress was 6.3 mL/min/100 g (CI -1.1; 14.1) with limits of agreement of -86.9 and 99.9. Mean bias of MPR was 0.11 (CI: -0.02; 0.23) with limits of agreement of -1.43 and 1.64. CONCLUSION: MBF may be determined from coronary sinus blood flow, with acceptable bias, but relatively large limits of agreement, against the reference of MBFDCE . LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Coronary Sinus , Diabetes Mellitus, Type 2 , Myocardial Perfusion Imaging , Adult , Aged , Humans , Male , Middle Aged , Coronary Circulation/physiology , Coronary Sinus/diagnostic imaging , Diabetes Mellitus, Type 2/diagnostic imaging , Magnetic Resonance Imaging/methods , Myocardial Perfusion Imaging/methods , Prospective Studies , Female
5.
J Magn Reson Imaging ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38344930

ABSTRACT

BACKGROUND: Four-dimensional-flow cardiac MR (4DF-MR) offers advantages in primary mitral regurgitation. The relationship between 4DF-MR-derived mitral regurgitant volume (MR-Rvol) and the post-operative left ventricular (LV) reverse remodeling has not yet been established. PURPOSE: To ascertain if the 4DF-MR-derived MR-Rvol correlates with the LV reverse remodeling in primary mitral regurgitation. STUDY TYPE: Prospective, single-center, two arm, interventional vs. nonintervention observational study. POPULATION: Forty-four patients (male N = 30; median age 68 [59-75]) with at least moderate primary mitral regurgitation; either awaiting mitral valve surgery (repair [MVr], replacement [MVR]) or undergoing "watchful waiting" (WW). FIELD STRENGTH/SEQUENCE: 5 T/Balanced steady-state free precession (bSSFP) sequence/Phase contrast imaging/Multishot echo-planar imaging pulse sequence (five shots). ASSESSMENT: Patients underwent transthoracic echocardiography (TTE), phase-contrast MR (PMRI), 4DF-MR and 6-minute walk test (6MWT) at baseline, and a follow-up PMRI and 6MWT at 6 months. MR-Rvol was quantified by PMRI, 4DF-MR, and TTE by one observer. The pre-operative MR-Rvol was correlated with the post-operative decrease in the LV end-diastolic volume index (LVEDVi). STATISTICAL TESTS: Included Student t-test/Mann-Whitney test/Fisher's exact test, Bland-Altman plots, linear regression analysis and receiver operating characteristic curves. Statistical significance was defined as P < 0.05. RESULTS: While Bland-Altman plots demonstrated similar bias between all the modalities, the limits of agreement were narrower between 4DF-MR and PMRI (bias 15; limits of agreement -36 mL to 65 mL), than between 4DF-MR and TTE (bias -8; limits of agreement -106 mL to 90 mL) and PMRI and TTE (bias -23; limits of agreement -105 mL to 59 mL). Linear regression analysis demonstrated a significant association between the MR-Rvol and the post-operative decrease in the LVEDVi, when the MR-Rvol was quantified by PMRI and 4DF-MR, but not by TTE (P = 0.73). 4DF-MR demonstrated the best diagnostic performance for reduction in the post-operative LVEDVi with the largest area under the curve (4DF-MR 0.83; vs. PMRI 0.78; and TTE 0.51; P = 0.89). DATA CONCLUSION: This study demonstrates the potential clinical utility of 4DF-MR in the assessment of primary mitral regurgitation. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 5.

6.
J Cardiovasc Magn Reson ; 26(1): 100003, 2024.
Article in English | MEDLINE | ID: mdl-38211658

ABSTRACT

BACKGROUND: 4D flow MRI enables assessment of cardiac function and intra-cardiac blood flow dynamics from a single acquisition. However, due to the poor contrast between the chambers and surrounding tissue, quantitative analysis relies on the segmentation derived from a registered cine MRI acquisition. This requires an additional acquisition and is prone to imperfect spatial and temporal inter-scan alignment. Therefore, in this work we developed and evaluated deep learning-based methods to segment the left ventricle (LV) from 4D flow MRI directly. METHODS: We compared five deep learning-based approaches with different network structures, data pre-processing and feature fusion methods. For the data pre-processing, the 4D flow MRI data was reformatted into a stack of short-axis view slices. Two feature fusion approaches were proposed to integrate the features from magnitude and velocity images. The networks were trained and evaluated on an in-house dataset of 101 subjects with 67,567 2D images and 3030 3D volumes. The performance was evaluated using various metrics including Dice, average surface distance (ASD), end-diastolic volume (EDV), end-systolic volume (ESV), LV ejection fraction (LVEF), LV blood flow kinetic energy (KE) and LV flow components. The Monte Carlo dropout method was used to assess the confidence and to describe the uncertainty area in the segmentation results. RESULTS: Among the five models, the model combining 2D U-Net with late fusion method operating on short-axis reformatted 4D flow volumes achieved the best results with Dice of 84.52% and ASD of 3.14 mm. The best averaged absolute and relative error between manual and automated segmentation for EDV, ESV, LVEF and KE was 19.93 ml (10.39%), 17.38 ml (22.22%), 7.37% (13.93%) and 0.07 mJ (5.61%), respectively. Flow component results derived from automated segmentation showed high correlation and small average error compared to results derived from manual segmentation. CONCLUSIONS: Deep learning-based methods can achieve accurate automated LV segmentation and subsequent quantification of volumetric and hemodynamic LV parameters from 4D flow MRI without requiring an additional cine MRI acquisition.


Subject(s)
Automation , Coronary Circulation , Deep Learning , Heart Ventricles , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine , Myocardial Perfusion Imaging , Predictive Value of Tests , Ventricular Function, Left , Humans , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Blood Flow Velocity , Reproducibility of Results , Myocardial Perfusion Imaging/methods , Male , Female , Middle Aged , Databases, Factual
7.
J Cardiovasc Magn Reson ; 26(1): 100006, 2024.
Article in English | MEDLINE | ID: mdl-38215698

ABSTRACT

This position statement guides cardiovascular magnetic resonance (CMR) imaging program directors and learners on the key competencies required for Level II and III CMR practitioners, whether trainees come from a radiology or cardiology background. This document is built upon existing curricula and was created and vetted by an international panel of cardiologists and radiologists on behalf of the Society for Cardiovascular Magnetic Resonance (SCMR).


Subject(s)
Cardiology , Clinical Competence , Consensus , Curriculum , Education, Medical, Graduate , Magnetic Resonance Imaging , Humans , Education, Medical, Graduate/standards , Magnetic Resonance Imaging/standards , Cardiology/education , Cardiology/standards , Cardiovascular Diseases/diagnostic imaging , Cardiologists/education , Cardiologists/standards , Predictive Value of Tests , Radiologists/education , Radiologists/standards , Radiology/education , Radiology/standards , Societies, Medical/standards
8.
BMC Cardiovasc Disord ; 24(1): 329, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943084

ABSTRACT

BACKGROUND: Pulmonary transit time (PTT) can be measured automatically from arterial input function (AIF) images of dual sequence first-pass perfusion imaging. PTT has been validated against invasive cardiac catheterisation correlating with both cardiac output and left ventricular filling pressure (both important prognostic markers in heart failure). We hypothesized that prolonged PTT is associated with clinical outcomes in patients with heart failure. METHODS: We recruited outpatients with a recent diagnosis of non-ischaemic heart failure with left ventricular ejection fraction (LVEF) < 50% on referral echocardiogram. Patients were followed up by a review of medical records for major adverse cardiovascular events (MACE) defined as all-cause mortality, heart failure hospitalization, ventricular arrhythmia, stroke or myocardial infarction. PTT was measured automatically from low-resolution AIF dynamic series of both the LV and RV during rest perfusion imaging, and the PTT was measured as the time (in seconds) between the centroid of the left (LV) and right ventricle (RV) indicator dilution curves. RESULTS: Patients (N = 294) were followed-up for median 2.0 years during which 37 patients (12.6%) had at least one MACE event. On univariate Cox regression analysis there was a significant association between PTT and MACE (Hazard ratio (HR) 1.16, 95% confidence interval (CI) 1.08-1.25, P = 0.0001). There was also significant association between PTT and heart failure hospitalisation (HR 1.15, 95% CI 1.02-1.29, P = 0.02) and moderate correlation between PTT and N-terminal pro B-type natriuretic peptide (NT-proBNP, r = 0.51, P < 0.001). PTT remained predictive of MACE after adjustment for clinical and imaging factors but was no longer significant once adjusted for NT-proBNP. CONCLUSIONS: PTT measured automatically during CMR perfusion imaging in patients with recent onset non-ischaemic heart failure is predictive of MACE and in particular heart failure hospitalisation. PTT derived in this way may be a non-invasive marker of haemodynamic congestion in heart failure and future studies are required to establish if prolonged PTT identifies those who may warrant closer follow-up or medicine optimisation to reduce the risk of future adverse events.


Subject(s)
Heart Failure , Myocardial Perfusion Imaging , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left , Humans , Heart Failure/physiopathology , Heart Failure/diagnosis , Heart Failure/mortality , Heart Failure/diagnostic imaging , Heart Failure/therapy , Male , Female , Middle Aged , Aged , Time Factors , Prognosis , Myocardial Perfusion Imaging/methods , Risk Factors , Pulmonary Circulation , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Pulmonary Artery/physiopathology , Pulmonary Artery/diagnostic imaging , Risk Assessment , Ventricular Function, Right , Magnetic Resonance Imaging
9.
Magn Reson Med ; 90(1): 150-165, 2023 07.
Article in English | MEDLINE | ID: mdl-36941736

ABSTRACT

PURPOSE: Tensor-valued diffusion encoding can probe more specific features of tissue microstructure than what is available by conventional diffusion weighting. In this work, we investigate the technical feasibility of tensor-valued diffusion encoding at high b-values with q-space trajectory imaging (QTI) analysis, in the human heart in vivo. METHODS: Ten healthy volunteers were scanned on a 3T scanner. We designed time-optimal gradient waveforms for tensor-valued diffusion encoding (linear and planar) with second-order motion compensation. Data were analyzed with QTI. Normal values and repeatability were investigated for the mean diffusivity (MD), fractional anisotropy (FA), microscopic FA (µFA), isotropic, anisotropic and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc ). A phantom, consisting of two fiber blocks at adjustable angles, was used to evaluate sensitivity of parameters to orientation dispersion and diffusion time. RESULTS: QTI data in the left ventricular myocardium were MD = 1.62 ± 0.07 µm2 /ms, FA = 0.31 ± 0.03, µFA = 0.43 ± 0.07, MKa = 0.20 ± 0.07, MKi = 0.13 ± 0.03, MKt = 0.33 ± 0.09, and Cc  = 0.56 ± 0.22 (mean ± SD across subjects). Phantom experiments showed that FA depends on orientation dispersion, whereas µFA was insensitive to this effect. CONCLUSION: We demonstrated the first tensor-valued diffusion encoding and QTI analysis in the heart in vivo, along with first measurements of myocardial µFA, MKi, MKa, and Cc . The methodology is technically feasible and provides promising novel biomarkers for myocardial tissue characterization.


Subject(s)
Diffusion Tensor Imaging , Heart , Humans , Diffusion Tensor Imaging/methods , Heart/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Myocardium , Heart Ventricles , Anisotropy
10.
Cardiovasc Diabetol ; 22(1): 78, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004049

ABSTRACT

BACKGROUND: Diffuse myocardial fibrosis and microvascular dysfunction are suggested to underlie cardiac dysfunction in patients with type 2 diabetes, but studies investigating their relative impact are lacking. We aimed to study imaging biomarkers of these and hypothesized that fibrosis and microvascular dysfunction would affect different phases of left ventricular (LV) diastole. METHODS: In this cross-sectional study myocardial blood flow (MBF) at rest and adenosine-stress and perfusion reserve (MPR), as well as extracellular volume fraction (ECV), were determined with cardiovascular magnetic resonance (CMR) imaging in 205 patients with type 2 diabetes and 25 controls. Diastolic parameters included echocardiography-determined lateral e' and average E/e', and CMR-determined (rest and chronotropic-stress) LV early peak filling rate (ePFR), LV peak diastolic strain rate (PDSR), and left atrial (LA) volume changes. RESULTS: In multivariable analysis adjusted for possible confounders including each other (ECV for blood flow and vice versa), a 10% increase of ECV was independently associated with ePFR/EDV (rest: ß = - 4.0%, stress: ß = - 7.9%), LAmax /BSA (rest: ß = 4.8%, stress: ß = 5.8%), and circumferential (ß = - 4.1%) and radial PDSR (ß = 0.07%/sec). A 10% stress MBF increase was associated with lateral e' (ß = 1.4%) and average E/e' (ß = - 1.4%) and a 10% MPR increase to lateral e' (ß = 2.7%), and average E/e' (ß = - 2.8%). For all the above, p < 0.05. No associations were found with longitudinal PDSR or left atrial total emptying fraction. CONCLUSION: In patients with type 2 diabetes, imaging biomarkers of microvascular dysfunction and diffuse fibrosis impacts diastolic dysfunction independently of each other. Microvascular dysfunction primarily affects early left ventricular relaxation. Diffuse fibrosis primarily affects diastasis. Trial registration https://www. CLINICALTRIALS: gov . Unique identifier: NCT02684331. Date of registration: February 18, 2016.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Diabetes Mellitus, Type 2 , Ventricular Dysfunction, Left , Humans , Cross-Sectional Studies , Diastole , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Prospective Studies , Fibrosis , Biomarkers , Ventricular Function, Left , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Stroke Volume/physiology
11.
J Magn Reson Imaging ; 57(3): 789-799, 2023 03.
Article in English | MEDLINE | ID: mdl-35792484

ABSTRACT

BACKGROUND: Cardiac MRI is an important imaging tool in congenital cardiac disease, but its use has been limited in the neonatal population as general anesthesia has been needed for breath-holding. Technological advances in four-dimensional (4D) flow MRI have now made nonsedated free-breathing acquisition protocols a viable clinical option, but the method requires prospective validation in neonates. PURPOSE: To test the feasibility of compressed sensing (CS) 4D flow MRI in the neonatal population and to compare with standard previously validated two-dimensional (2D) phase-contrast (PC) flow MRI. STUDY TYPE: Prospective, cohort, image quality. POPULATION: A total of 14 healthy neonates (median [range] age: 2.5 [0-80] days; 8 male). FIELD STRENGTH AND SEQUENCE: Noncontrast 2D cine gradient echo sequence with through-plane velocity encoding (PC) sequence and compressed sensing (CS) three-dimensional (3D), time-resolved, cine phase-contrast MRI with 3D velocity-encoding (4D flow MRI) at 3 T. ASSESSMENT: Aortic 2D PC, and aortic, pulmonary trunk and superior vena cava CS 4D flow MRI were acquired using the feed and wrap technique (nonsedated) and quantified using commercially available software. Aortic flow and peak velocity were compared between methods. Internal consistency of 4D flow MRI was determined by comparing mean forward flow of the main pulmonary artery (MPA) vs. the sum of left and right pulmonary artery flows (LPA and RPA) and by comparing mean ascending aorta forward flow (AAo) vs. the sum of superior vena cava (SVC) and descending aorta flows (DAo). STATISTICAL TESTS: Flow and peak-velocity comparisons were assessed using paired t-tests, with P < 0.05 considered significant, and Bland-Altman analysis. Interobserver and intraobserver agreement and internal consistency were analyzed by intraclass correlation co-efficient (ICC). RESULTS: There was no statistically significant difference between ascending aortic forward flow between 2D PC and CS 4D Flow MRI (P = 0.26) with a bias of 0.11 mL (-0.59 to 0.82 mL) nor peak velocity (P = 0.11), with a bias of -5 cm/sec and (-26 to 16 cm/sec). There was excellent interobserver and intraobserver agreement for each vessel (interobserver ICC: AAo 1.00; DAo 0.94, SVC 0.90, MPA 0.99, RPA 0.98, LPA 0.96; intraobserver ICC: AAo 1.00; DAo 0.99, SVC 0.98, MPA 1.00, RPA 1.00, LPA 0.99). Internal consistency measures showed excellent agreement for both mean forward flow of main pulmonary artery vs. the sum of left and right pulmonary arteries (ICC: 0.95) and mean ascending aorta forward flow vs. the sum of superior vena cava and descending aorta flows (ICC: 1.00). CONCLUSION: Sedation-free neonatal feed and wrap MRI is well tolerated and feasible. CS 4D flow MRI quantification is similar to validated 2D PC free-breathing imaging with excellent interobserver and intraobserver agreement. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Magnetic Resonance Imaging , Vena Cava, Superior , Infant, Newborn , Humans , Male , Child, Preschool , Magnetic Resonance Imaging/methods , Aorta , Lung , Software , Blood Flow Velocity , Reproducibility of Results , Imaging, Three-Dimensional/methods
12.
Eur Radiol ; 33(1): 339-347, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35984513

ABSTRACT

OBJECTIVES: In patients of advanced age, the feasibility of myocardial ischemia testing might be limited by age-related comorbidities and falling compliance abilities. Therefore, we aimed to test the accuracy of 3D cardiac magnetic resonance (CMR) stress perfusion in the elderly population as compared to reference standard fractional flow reserve (FFR). METHODS: Fifty-six patients at age 75 years or older (mean age 79 ± 4 years, 35 male) underwent 3D CMR perfusion imaging and invasive coronary angiography with FFR in 5 centers using the same study protocol. The diagnostic accuracy of CMR was compared to a control group of 360 patients aged below 75 years (mean age 61 ± 9 years, 262 male). The percentage of myocardial ischemic burden (MIB) relative to myocardial scar burden was further analyzed using semi-automated software. RESULTS: Sensitivity, specificity, and positive and negative predictive values of 3D perfusion CMR deemed similar for both age groups in the detection of hemodynamically relevant (FFR < 0.8) stenosis (≥ 75 years: 86%, 83%, 92%, and 75%; < 75 years: 87%, 80%, 82%, and 85%; p > 0.05 all). While MIB was larger in the elderly patients (15% ± 17% vs. 9% ± 13%), the diagnostic accuracy of 3D CMR perfusion was high in both elderly and non-elderly populations to predict pathological FFR (AUC: 0.906 and 0.866). CONCLUSIONS: 3D CMR perfusion has excellent diagnostic accuracy for the detection of hemodynamically relevant coronary stenosis, independent of patient age. KEY POINTS: • The increasing prevalence of coronary artery disease in elderly populations is accompanied with a larger ischemic burden of the myocardium as compared to younger individuals. • 3D cardiac magnetic resonance perfusion imaging predicts pathological fractional flow reserve in elderly patients aged ≥ 75 years with high diagnostic accuracy. • Ischemia testing with 3D CMR perfusion imaging has similarly high accuracy in the elderly as in younger patients and it might be particularly useful when other non-invasive techniques are limited by aging-related comorbidities and falling compliance abilities.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Humans , Male , Aged , Aged, 80 and over , Middle Aged , Coronary Artery Disease/diagnosis , Myocardial Perfusion Imaging/methods , Severity of Illness Index , Coronary Angiography/methods , Predictive Value of Tests , Perfusion , Magnetic Resonance Spectroscopy
13.
J Cardiovasc Magn Reson ; 25(1): 43, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37496072

ABSTRACT

BACKGROUND: When feasible, guidelines recommend mitral valve repair (MVr) over mitral valve replacement (MVR) to treat primary mitral regurgitation (MR), based upon historic outcome studies and transthoracic echocardiography (TTE) reverse remodeling studies. Cardiovascular magnetic resonance (CMR) offers reference standard biventricular assessment with superior MR quantification compared to TTE. Using serial CMR in primary MR patients, we aimed to investigate cardiac reverse remodeling and residual MR post-MVr vs MVR with chordal preservation. METHODS: 83 patients with ≥ moderate-severe MR on TTE were prospectively recruited. 6-min walk tests (6MWT) and CMR imaging including cine imaging, aortic/pulmonary through-plane phase contrast imaging, T1 maps and late-gadolinium-enhanced (LGE) imaging were performed at baseline and 6 months after mitral surgery or watchful waiting (control group). RESULTS: 72 patients completed follow-up (Controls = 20, MVr = 30 and MVR = 22). Surgical groups demonstrated comparable baseline cardiac indices and co-morbidities. At 6-months, MVr and MVR groups demonstrated comparable improvements in 6MWT distances (+ 57 ± 54 m vs + 64 ± 76 m respectively, p = 1), reduced indexed left ventricular end-diastolic volumes (LVEDVi; - 29 ± 21 ml/m2 vs - 37 ± 22 ml/m2 respectively, p = 0.584) and left atrial volumes (- 23 ± 30 ml/m2 and - 39 ± 26 ml/m2 respectively, p = 0.545). At 6-months, compared with controls, right ventricular ejection fraction was poorer post-MVr (47 ± 6.1% vs 53 ± 8.0% respectively, p = 0.01) compared to post-MVR (50 ± 5.7% vs 53 ± 8.0% respectively, p = 0.698). MVR resulted in lower residual MR-regurgitant fraction (RF) than MVr (12 ± 8.0% vs 21 ± 11% respectively, p = 0.022). Baseline and follow-up indices of diffuse and focal myocardial fibrosis (Native T1 relaxation times, extra-cellular volume and quantified LGE respectively) were comparable between groups. Stepwise multiple linear regression of indexed variables in the surgical groups demonstrated baseline indexed mitral regurgitant volume as the sole multivariate predictor of left ventricular (LV) end-diastolic reverse remodelling, baseline LVEDVi as the most significant independent multivariate predictor of follow-up LVEDVi, baseline indexed LV end-systolic volume as the sole multivariate predictor of follow-up LV ejection fraction and undergoing MVR (vs MVr) as the most significant (p < 0.001) baseline multivariate predictor of lower residual MR. CONCLUSION: In primary MR, MVR with chordal preservation may offer comparable cardiac reverse remodeling and functional benefits at 6-months when compared to MVr. Larger, multicenter CMR studies are required, which if the findings are confirmed could impact future surgical practice.


Subject(s)
Mitral Valve Insufficiency , Humans , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/surgery , Mitral Valve Insufficiency/pathology , Mitral Valve/diagnostic imaging , Mitral Valve/surgery , Stroke Volume , Predictive Value of Tests , Ventricular Function, Right , Fibrosis
14.
J Cardiovasc Magn Reson ; 25(1): 21, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973744

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic that has affected nearly 600 million people to date across the world. While COVID-19 is primarily a respiratory illness, cardiac injury is also known to occur. Cardiovascular magnetic resonance (CMR) imaging is uniquely capable of characterizing myocardial tissue properties in-vivo, enabling insights into the pattern and degree of cardiac injury. The reported prevalence of myocardial involvement identified by CMR in the context of COVID-19 infection among previously hospitalized patients ranges from 26 to 60%. Variations in the reported prevalence of myocardial involvement may result from differing patient populations (e.g. differences in severity of illness) and the varying intervals between acute infection and CMR evaluation. Standardized methodologies in image acquisition, analysis, interpretation, and reporting of CMR abnormalities across would likely improve concordance between studies. This consensus document by the Society for Cardiovascular Magnetic Resonance (SCMR) provides recommendations on CMR imaging and reporting metrics towards the goal of improved standardization and uniform data acquisition and analytic approaches when performing CMR in patients with COVID-19 infection.


Subject(s)
COVID-19 , Heart Diseases , Magnetic Resonance Imaging , Humans , COVID-19/complications , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Magnetic Resonance Spectroscopy , Myocarditis/diagnostic imaging , Predictive Value of Tests , Heart Diseases/diagnostic imaging , Heart Diseases/etiology
15.
J Cardiovasc Magn Reson ; 25(1): 65, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37968709

ABSTRACT

The early career professionals in the field of Cardiovascular Magnetic Resonance (CMR) face unique challenges and hurdles while establishing their careers in the field. The Society for Cardiovascular Magnetic Resonance (SCMR) has expanded the role of the early career section within the society to foster the careers of future CMR leaders. This paper aims to describe the obstacles and available opportunities for the early career CMR professionals worldwide. Societal opportunities and actions targeted at the professional advancement of the early career CMR imagers are needed to ensure continuous growth of CMR as an imaging modality globally.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
16.
J Cardiovasc Magn Reson ; 25(1): 50, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37718441

ABSTRACT

BACKGROUND: Advances in four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) have allowed quantification of left ventricular (LV) and right ventricular (RV) blood flow. We aimed to (1) investigate age and sex differences of 4D flow CMR-derived LV and RV relative flow components and kinetic energy (KE) parameters indexed to end-diastolic volume (KEiEDV) in healthy subjects; and (2) assess the effects of age and sex on these parameters. METHODS: We performed 4D flow analysis in 163 healthy participants (42% female; mean age 43 ± 13 years) of a prospective registry study (NCT03217240) who were free of cardiovascular diseases. Relative flow components (direct flow, retained inflow, delayed ejection flow, residual volume) and multiple phasic KEiEDV (global, peak systolic, average systolic, average diastolic, peak E-wave, peak A-wave) for both LV and RV were analysed. RESULTS: Compared with men, women had lower median LV and RV residual volume, and LV peak and average systolic KEiEDV, and higher median values of RV direct flow, RV global KEiEDV, RV average diastolic KEiEDV, and RV peak E-wave KEiEDV. ANOVA analysis found there were no differences in flow components, peak and average systolic, average diastolic and global KEiEDV for both LV and RV across age groups. Peak A-wave KEiEDV increased significantly (r = 0.458 for LV and 0.341 for RV), whereas peak E-wave KEiEDV (r = - 0.355 for LV and - 0.318 for RV), and KEiEDV E/A ratio (r = - 0.475 for LV and - 0.504 for RV) decreased significantly, with age. CONCLUSION: These data using state-of-the-art 4D flow CMR show that biventricular flow components and kinetic energy parameters vary significantly by age and sex. Age and sex trends should be considered in the interpretation of quantitative measures of biventricular flow. Clinical trial registration  https://www. CLINICALTRIALS: gov . Unique identifier: NCT03217240.


Subject(s)
Heart Ventricles , Adult , Female , Humans , Male , Middle Aged , Healthy Volunteers , Heart Ventricles/diagnostic imaging , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reference Values
17.
BMC Cardiovasc Disord ; 23(1): 246, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37170253

ABSTRACT

OBJECTIVE: To investigate whether left atrial (LA) volume and left ventricular filling pressure (LVFP) assessed by cardiovascular magnetic resonance (CMR) change during adenosine delivered myocardial hyperaemia as part of a first-pass stress perfusion study. METHODS AND RESULTS: We enrolled 33 patients who had stress CMR. These patients had a baseline four-chamber cine and stress four-chamber cine, which was done at peak myocardial hyperaemic state after administering adenosine. The left and right atria were segmented in the end ventricular diastolic and systolic phases. Short-axis cine stack was segmented for ventricular functional assessment. At peak hyperaemic state, left atrial end ventricular systolic volume just before mitral valve opening increased significantly from baseline in all (91 ± 35ml vs. 81 ± 33ml, P = 0.0002), in males only (99 ± 35ml vs. 88 ± 33ml, P = 0.002) and females only (70 ± 26ml vs. 62 ± 22ml, P = 0.02). The right atrial end ventricular systolic volume increased less significantly from baseline (68 ± 21ml vs. 63 ± 20ml, P = 0.0448). CMR-derived LVFP (equivalent to pulmonary capillary wedge pressure) increased significantly at the peak hyperaemic state in all (15.1 ± 2.9mmHg vs. 14.4 ± 2.8mmHg, P = 0.0002), females only (12.9 ± 2.1mmHg vs. 12.3 ± 1.9mmHg, P = 0.029) and males only (15.9 ± 2.8mmHg vs. 15.2 ± 2.7mmHg, P = 0.002) cohorts. CONCLUSION: Left atrial volume assessment by CMR can measure acute and dynamic changes in preloading conditions on the left ventricle. During adenosine administered first-pass perfusion CMR, left atrial volume and LVFP rise significantly.


Subject(s)
Atrial Fibrillation , Hyperemia , Male , Female , Humans , Heart Atria/diagnostic imaging , Magnetic Resonance Imaging , Perfusion , Stroke Volume , Magnetic Resonance Imaging, Cine/methods , Ventricular Function, Left
18.
Eur Heart J ; 43(2): 105-117, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34516621

ABSTRACT

Intracoronary physiology testing has emerged as a valuable diagnostic approach in the management of patients with chronic coronary syndrome, circumventing limitations like inferring coronary function from anatomical assessment and low spatial resolution associated with angiography or non-invasive tests. The value of hyperaemic translesional pressure ratios to estimate the functional relevance of coronary stenoses is supported by a wealth of prognostic data. The continuing drive to further simplify this approach led to the development of non-hyperaemic pressure-based indices. Recent attention has focussed on estimating physiology without even measuring coronary pressure. However, the reduction in procedural time and ease of accessibility afforded by these simplifications needs to be counterbalanced against the increasing burden of physiological assumptions, which may impact on the ability to reliably identify an ischaemic substrate, the ultimate goal during catheter laboratory assessment. In that regard, measurement of both coronary pressure and flow enables comprehensive physiological evaluation of both epicardial and microcirculatory components of the vasculature, although widespread adoption has been hampered by perceived technical complexity and, in general, an underappreciation of the role of the microvasculature. In parallel, entirely non-invasive tools have matured, with the utilization of various techniques including computational fluid dynamic and quantitative perfusion analysis. This review article appraises the strengths and limitations for each test in investigating myocardial ischaemia and discusses a comprehensive algorithm that could be used to obtain a diagnosis in all patients with angina scheduled for coronary angiography, including those who are not found to have obstructive epicardial coronary disease.


Subject(s)
Coronary Stenosis , Coronary Angiography , Coronary Stenosis/diagnosis , Humans , Ischemia , Microcirculation/physiology , Syndrome
19.
Medicina (Kaunas) ; 59(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38003973

ABSTRACT

Background and Objectives: Cardiovascular magnetic resonance (CMR) is emerging as an important imaging tool for sub-phenotyping and estimating left ventricular (LV) filling pressure (LVFP). The N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) is released from cardiac myocytes in response to mechanical load and wall stress. This study sought to investigate if CMR-derived LVFP is associated with the serum levels of NT-proBNP and, in addition, if it provides any incremental prognostic value in heart failure (HF). Materials and Methods: This study recruited 380 patients diagnosed with HF who underwent same-day CMR and clinical assessment between February 2018 and January 2020. CMR-derived LVFP was calculated, as previously, from long- and short-axis cines. During CMR assessment, serum NT-proBNP was measured. The pathological cut-offs were defined as follows: NT-proBNP ≥ 125 pg/mL and CMR LVFP > 15 mmHg. The incidence of HF hospitalisation was treated as a clinical outcome. Results: In total, 305 patients had NT-proBNP ≥ 125 pg/mL. Patients with raised NT-proBNP were older (54 ± 14 vs. 64 ± 11 years, p < 0.0001). Patients with raised NT-proBNP had higher LV volumes and mass. In addition, CMR LVFP was higher in patients with raised NT-proBNP (13.2 ± 2.6 vs. 15.4 ± 3.2 mmHg, p < 0.0001). The serum levels of NT-proBNP were associated with CMR-derived LVFP (R = 0.42, p < 0.0001). In logistic regression analysis, this association between NT-proBNP and CMR LVFP was independent of all other CMR variables, including LV ejection fraction, LV mass, and left atrial volume (coefficient = 2.02, p = 0.002). CMR LVFP demonstrated an independent association with the incidence of HF hospitalisation above NT-proBNP (hazard ratio 2.7, 95% confidence interval 1.2 to 6, p = 0.01). Conclusions: A CMR-modelled LVFP is independently associated with serum NT-proBNP levels. Importantly, it provides an incremental prognostic value over and above serum NT-proBNP levels.


Subject(s)
Heart Failure , Natriuretic Peptide, Brain , Humans , Magnetic Resonance Imaging , Stroke Volume/physiology , Prognosis , Magnetic Resonance Spectroscopy , Biomarkers
20.
N Engl J Med ; 380(25): 2418-2428, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31216398

ABSTRACT

BACKGROUND: In patients with stable angina, two strategies are often used to guide revascularization: one involves myocardial-perfusion cardiovascular magnetic resonance imaging (MRI), and the other involves invasive angiography and measurement of fractional flow reserve (FFR). Whether a cardiovascular MRI-based strategy is noninferior to an FFR-based strategy with respect to major adverse cardiac events has not been established. METHODS: We performed an unblinded, multicenter, clinical-effectiveness trial by randomly assigning 918 patients with typical angina and either two or more cardiovascular risk factors or a positive exercise treadmill test to a cardiovascular MRI-based strategy or an FFR-based strategy. Revascularization was recommended for patients in the cardiovascular-MRI group with ischemia in at least 6% of the myocardium or in the FFR group with an FFR of 0.8 or less. The composite primary outcome was death, nonfatal myocardial infarction, or target-vessel revascularization within 1 year. The noninferiority margin was a risk difference of 6 percentage points. RESULTS: A total of 184 of 454 patients (40.5%) in the cardiovascular-MRI group and 213 of 464 patients (45.9%) in the FFR group met criteria to recommend revascularization (P = 0.11). Fewer patients in the cardiovascular-MRI group than in the FFR group underwent index revascularization (162 [35.7%] vs. 209 [45.0%], P = 0.005). The primary outcome occurred in 15 of 421 patients (3.6%) in the cardiovascular-MRI group and 16 of 430 patients (3.7%) in the FFR group (risk difference, -0.2 percentage points; 95% confidence interval, -2.7 to 2.4), findings that met the noninferiority threshold. The percentage of patients free from angina at 12 months did not differ significantly between the two groups (49.2% in the cardiovascular-MRI group and 43.8% in the FFR group, P = 0.21). CONCLUSIONS: Among patients with stable angina and risk factors for coronary artery disease, myocardial-perfusion cardiovascular MRI was associated with a lower incidence of coronary revascularization than FFR and was noninferior to FFR with respect to major adverse cardiac events. (Funded by the Guy's and St. Thomas' Biomedical Research Centre of the National Institute for Health Research and others; MR-INFORM ClinicalTrials.gov number, NCT01236807.).


Subject(s)
Angina, Stable/diagnosis , Coronary Angiography , Fractional Flow Reserve, Myocardial , Magnetic Resonance Angiography , Adult , Aged , Angina, Stable/complications , Angina, Stable/diagnostic imaging , Angina, Stable/physiopathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Female , Humans , Male , Middle Aged , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL