Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
J Am Chem Soc ; 146(11): 7222-7232, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38469853

ABSTRACT

Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center. A thin layer of eumelanin is polymerized on the surface of nanodiamonds (NDs), and depending on the environmental conditions, such as the local pH value, near-infrared, and ultraviolet light irradiation, the radicals form and react in situ. By combining experiments and theoretical simulations, we quantify the local number and kinetics of free radicals in the eumelanin layer. Next, the ND sensor enters the cells via endosomal vesicles. We quantify the number of radicals formed within the eumelanin layer in these acidic compartments by applying optical relaxometry measurements. In the future, we believe that the ND quantum sensor could provide valuable insights into the chemistry of eumelanin, which could contribute to the understanding and treatment of eumelanin- and melanin-related diseases.


Subject(s)
Melanins , Nanodiamonds , Ultraviolet Rays , Free Radicals
2.
Phys Rev Lett ; 132(25): 250801, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38996246

ABSTRACT

We present a quantum sensing technique that utilizes a sequence of π pulses to cyclically drive the qubit dynamics along a geodesic path of adiabatic evolution. This approach effectively suppresses the effects of both decoherence noise and control errors while simultaneously removing unwanted resonance terms, such as higher harmonics and spurious responses commonly encountered in dynamical decoupling control. As a result, our technique offers robust, wide-band, unambiguous, and high-resolution quantum sensing capabilities for signal detection and individual addressing of quantum systems, including spins. To demonstrate its versatility, we showcase successful applications of our method in both low-frequency and high-frequency sensing scenarios. The significance of this quantum sensing technique extends to the detection of complex signals and the control of intricate quantum environments. By enhancing detection accuracy and enabling precise manipulation of quantum systems, our method holds considerable promise for a variety of practical applications.

3.
Phys Rev Lett ; 132(10): 100403, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38518302

ABSTRACT

Conducting precise electronic-vibrational dynamics simulations of molecular systems poses significant challenges when dealing with realistic environments composed of numerous vibrational modes. Here, we introduce a technique for the construction of effective phonon spectral densities that capture accurately open-system dynamics over a finite time interval of interest. When combined with existing nonperturbative simulation tools, our approach can reduce significantly the computational costs associated with many-body open-system dynamics.

4.
Angew Chem Int Ed Engl ; 63(34): e202319341, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38805673

ABSTRACT

Parahydrogen-induced polarization (PHIP) is an inexpensive way to produce hyperpolarized molecules with polarization levels of >10 % in the solution-state, but is strongly limited in generality since it requires chemical reactions/ interactions with H2. Here we report a new method to widen the scope of PHIP hyperpolarization: a source molecule is produced via PHIP with high 13C polarization, and precipitated out of solution together with a target species. Spin diffusion within the solid carries the polarization onto 13C spins of the target, which can then be dissolved for solution-state applications. We name this method PHIP-SSD (PHIP with solid-state spin diffusion) and demonstrate it using PHIP-polarized [1-13C]-fumarate as the source molecule, to polarize different 13C-labelled target molecules. 13C polarizations of between 0.01 and 3 % were measured on [1-13C]-benzoic acid, depending on the molar ratio of fumarate:benzoate in the solid state. We also show that PHIP-SSD does not require specific co-crystallization conditions by grinding dry powders of target molecules together with solid fumarate crystals, and obtain 13C signal enhancements of between 100 and 200 on [13C,15N2]-urea, [1-13C]-pyruvate, and [1-13C]-benzoic acid. This approach appears to be a promising new strategy for facile hyperpolarization based on PHIP.

5.
Commun Math Phys ; 398(1): 291-351, 2023.
Article in English | MEDLINE | ID: mdl-36751403

ABSTRACT

We study asymptotic state transformations in continuous variable quantum resource theories. In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound asymptotic transformation rates in these settings. This removes the need for asymptotic continuity, which cannot be defined in the traditional sense for infinite-dimensional systems. We consider three applications, to the resource theories of (I)Ā optical nonclassicality, (II)Ā entanglement, and (III)Ā quantum thermodynamics. In casesĀ (II) andĀ (III), the employed monotones are the (infinite-dimensional) squashed entanglement and the free energy, respectively. For caseĀ (I), we consider the measured relative entropy of nonclassicality and prove it to be lower semicontinuous and strongly superadditive. One of our main technical contributions, and a key tool to establish these results, is a handy variational expression for the measured relative entropy of nonclassicality. Our technique then yields computable upper bounds on asymptotic transformation rates, including those achievable under linear optical elements. We also prove a number of results which guarantee that the measured relative entropy of nonclassicality is bounded on any physically meaningful state and easily computable for some classes of states of interest, e.g., Fock diagonal states. We conclude by applying our findings to the problem of cat state manipulation and noisy Fock state purification.

6.
J Am Chem Soc ; 144(28): 12642-12651, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35737900

ABSTRACT

Hydrogen peroxide (H2O2) plays an important role in various signal transduction pathways and regulates important cellular processes. However, monitoring and quantitatively assessing the distribution of H2O2 molecules inside living cells requires a nanoscale sensor with molecular-level sensitivity. Herein, we show the first demonstration of sub-10 nm-sized fluorescent nanodiamonds (NDs) as catalysts for the decomposition of H2O2 and the production of radical intermediates at the nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside the NDs are employed to quantify the aforementioned radicals. We believe that our method of combining the peroxidase-mimicking activities of the NDs with their intrinsic quantum sensor showcases their application as self-reporting H2O2 sensors with molecular-level sensitivity and nanoscale spatial resolution. Given the robustness and the specificity of the sensor, our results promise a new platform for elucidating the role of H2O2 at the cellular level.


Subject(s)
Nanodiamonds , Hydrogen Peroxide , Nitrogen
7.
J Am Chem Soc ; 144(6): 2511-2519, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35113568

ABSTRACT

Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T). This makes it possible to exploit the high spin polarization of optically polarized crystals, while mitigating the challenges of its transfer to external nuclei. With this method, we inject the highly polarized mixture into a benchtop NMR spectrometer and observe the polarization dynamics for target 1H nuclei. Although the spectra are radiation damped due to the high naphthalene magnetization, we describe a procedure to process the data to obtain more conventional NMR spectra and extract the target nuclei polarization. With the entire process occurring on a time scale of 1 min, we observe NMR signals enhanced by factors between -200 and -1730 at 1.45 T for a range of small molecules.

8.
Phys Rev Lett ; 128(11): 110401, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35362993

ABSTRACT

In 1957 Feynman suggested that the quantum or classical character of gravity may be assessed by testing the gravitational interaction due to source masses in superposition. However, in all proposed experimental realizations using matter-wave interferometry, the extreme weakness of this interaction requires pure initial states with extreme squeezing to achieve measurable effects of nonclassical interaction for reasonable experiment durations. In practice, the systems that can be prepared in such nonclassical states are limited to small masses, which in turn limits the strength of their interaction. Here we address this key challenge-the weakness of gravitational interaction-by using a massive body as an amplifying mediator of gravitational interaction between two test systems. Our analysis shows that this results in an effective interaction between the two test systems that grows with the mass of the mediator, is independent of its initial state and, therefore, its temperature. This greatly reduces the requirement on the mass and degree of delocalization of the test systems and, while still highly challenging, brings experiments on gravitational source masses a step closer to reality.

9.
Phys Rev Lett ; 129(12): 120501, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179183

ABSTRACT

Shor's factoring algorithm provides a superpolynomial speedup over all known classical factoring algorithms. Here, we address the question of which quantum properties fuel this advantage. We investigate a sequential variant of Shor's algorithm with a fixed overall structure and identify the role of coherence for this algorithm quantitatively. We analyze this protocol in the framework of dynamical resource theories, which capture the resource character of operations that can create and detect coherence. This allows us to derive a lower and an upper bound on the success probability of the protocol, which depend on rigorously defined measures of coherence as a dynamical resource. We compare these bounds with the classical limit of the protocol and conclude that within the fixed structure that we consider, coherence is the quantum resource that determines its performance by bounding the success probability from below and above. Therefore, we shine new light on the fundamental role of coherence in quantum computation.

10.
Phys Rev Lett ; 129(14): 140604, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36240420

ABSTRACT

We exploit the properties of chain mapping transformations of bosonic environments to identify a finite collection of modes able to capture the characteristic features, or fingerprint, of the environment. Moreover we show that the countable infinity of residual bath modes can be replaced by a universal Markovian closure, namely, a small collection of damped modes undergoing a Lindblad-type dynamics whose parametrization is independent of the spectral density under consideration. We show that the Markovian closure provides a quadratic speedup with respect to standard chain mapping techniques and makes the memory requirement independent of the simulation time, while preserving all the information on the fingerprint modes. We illustrate the application of the Markovian closure to the computation of linear spectra but also to nonlinear spectral response, a relevant experimentally accessible many body coherence witness for which efficient numerically exact calculations in realistic environments are currently lacking.

11.
Phys Rev Lett ; 129(15): 150501, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36269962

ABSTRACT

Multiphoton entangled quantum states are key to advancing quantum technologies such as multiparty quantum communications, quantum sensing, or quantum computation. Their scalable generation, however, remains an experimental challenge. Current methods for generating these states rely on stitching together photons from probabilistic sources, and state generation rates drop exponentially in the number of photons. Here, we implement a system based on active feed-forward and multiplexing that addresses this challenge. We demonstrate the scalable generation of four-photon and six-photon Greenberger-Horne-Zeilinger states, increasing generation rates by factors of 9 and 35, respectively. This is consistent with the exponential enhancement compared to the standard nonmultiplexed approach that is predicted by our theory. These results facilitate the realization of practical multiphoton protocols for photonic quantum technologies.

12.
Phys Rev Lett ; 126(19): 193602, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34047613

ABSTRACT

We present a ground-state cooling scheme for the mechanical degrees of freedom of mesoscopic magnetic particles levitated in low-frequency traps. Our method makes use of a binary sensor and suitably shaped pulses to perform weak, adaptive measurements on the position of the magnet. This allows us to precisely determine the position and momentum of the particle, transforming the initial high-entropy thermal state into a pure coherent state. The energy is then extracted by shifting the trap center. By delegating the task of energy extraction to a coherent displacement operation, we overcome the limitations associated with cooling schemes that rely on the dissipation of a two-level system coupled to the oscillator. We numerically benchmark our protocol in realistic experimental conditions, including heating rates and imperfect readout fidelities, showing that it is well suited for magnetogravitational traps operating at cryogenic temperatures. Our results pave the way for ground-state cooling of micron-scale particles.

13.
Phys Rev Lett ; 125(13): 130401, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33034475

ABSTRACT

Coherent superposition and entanglement are two fundamental aspects of nonclassicality. Here we provide a quantitative connection between the two on the level of operations by showing that the dynamical coherence of an operation upper bounds the dynamical entanglement that can be generated from it with the help of additional incoherent operations. In case a particular choice of monotones based on the relative entropy is used for the quantification of these dynamical resources, this bound can be achieved. In addition, we show that an analog to the entanglement potential exists on the level of operations and serves as a valid quantifier for dynamical coherence.

14.
Phys Rev Lett ; 125(2): 023602, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32701327

ABSTRACT

We extend the concept of dynamical decoupling from spin to mechanical degrees of freedom of macroscopic objects, for application in interferometry. In this manner, the superposition of matter waves can be made resilient to many important sources of noise when these are driven along suitable paths in space. As a concrete implementation, we present the case of levitated (or free falling) nanodiamonds hosting a color center in a magnetic field gradient. We point out that these interferometers are inherently affected by diamagnetic forces, which restrict the separation of the superposed states to distances that scale with the inverse of the magnetic field gradient. Periodic forcing of the mechanical degree of freedom is shown to overcome this limitation, achieving a linear-in-time growth of the separation distance independent of the magnetic field gradient, while simultaneously protecting the coherence of the superposition from environmental perturbations.

15.
Phys Rev Lett ; 125(11): 110504, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32975990

ABSTRACT

A general attenuator Φ_{λ,σ} is a bosonic quantum channel that acts by combining the input with a fixed environment state σ in a beam splitter of transmissivity λ. If σ is a thermal state, the resulting channel is a thermal attenuator, whose quantum capacity vanishes for λ≤1/2. We study the quantum capacity of these objects for generic σ, proving a number of unexpected results. Most notably, we show that for any arbitrary value of λ>0 there exists a suitable single-mode state σ(λ) such that the quantum capacity of Φ_{λ,σ(λ)} is larger than a universal constant c>0. Our result holds even when we fix an energy constraint at the input of the channel, and implies that quantum communication at a constant rate is possible even in the limit of arbitrarily low transmissivity, provided that the environment state is appropriately controlled. We also find examples of states σ such that the quantum capacity of Φ_{λ,σ} is not monotonic in λ. These findings may have implications for the study of communication lines running across integrated optical circuits, of which general attenuators provide natural models.

16.
Phys Rev Lett ; 124(23): 230602, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603162

ABSTRACT

We investigate the quench dynamics of an open quantum system involving a quantum phase transition. In the isolated case, the quench dynamics involving the phase transition exhibits a number of scaling relations with the quench rate as predicted by the celebrated Kibble-Zurek mechanism. In contact with an environment however, these scaling laws break down and one may observe an anti-Kibble-Zurek behavior: slower ramps lead to less adiabatic dynamics, increasing thus nonadiabatic effects with the quench time. In contrast to previous works, we show here that such anti-Kibble-Zurek scaling can acquire a universal form in the sense that it is determined by the equilibrium critical exponents of the phase transition, provided the excited states of the system exhibit singular behavior, as observed in fully connected models. This demonstrates novel universal scaling laws granted by a system-environment interaction in a critical system. We illustrate these findings in two fully connected models, namely, the quantum Rabi and the Lipkin-Meshkov-Glick models. In addition, we discuss the impact of nonlinear ramps and finite-size systems.

17.
Phys Rev Lett ; 125(6): 060404, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845691

ABSTRACT

Quantum coherence is a fundamental resource that quantum technologies exploit to achieve performance beyond that of classical devices. A necessary prerequisite to achieve this advantage is the ability of measurement devices to detect coherence from the measurement statistics. Based on a recently developed resource theory of quantum operations, here we quantify experimentally the ability of a typical quantum-optical detector, the weak-field homodyne detector, to detect coherence. We derive an improved algorithm for quantum detector tomography and apply it to reconstruct the positive-operator-valued measures of the detector in different configurations. The reconstructed positive-operator-valued measures are then employed to evaluate how well the detector can detect coherence using two computable measures. As the first experimental investigation of quantum measurements from a resource theoretical perspective, our work sheds new light on the rigorous evaluation of the performance of a quantum measurement apparatus.

18.
Angew Chem Int Ed Engl ; 59(38): 16455-16458, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32558120

ABSTRACT

A nanoring-rotaxane supramolecular assembly with a Cy7 cyanine dye (hexamethylindotricarbocyanine) threaded along the axis of the nanoring was synthesized as a model for the energy transfer between the light-harvesting complex LH1 and the reaction center in purple bacteria photosynthesis. The complex displays efficient energy transfer from the central cyanine dye to the surrounding zinc porphyrin nanoring. We present a theoretical model that reproduces the absorption spectrum of the nanoring and quantifies the excitonic coupling between the nanoring and the central dye, thereby explaining the efficient energy transfer and demonstrating similarity with structurally related natural light-harvesting systems.


Subject(s)
Carbocyanines/metabolism , Coloring Agents/metabolism , Light-Harvesting Protein Complexes/metabolism , Nanoparticles/metabolism , Porphyrins/metabolism , Rotaxanes/metabolism , Carbocyanines/chemistry , Coloring Agents/chemistry , Light-Harvesting Protein Complexes/chemistry , Models, Molecular , Nanoparticles/chemistry , Porphyrins/chemistry , Rotaxanes/chemistry
19.
Phys Rev Lett ; 122(2): 023602, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30720325

ABSTRACT

Recent observation of quantum emitters in monolayers of hexagonal boron nitride (h-BN) has provided a novel platform for optomechanical experiments where the single-photon emitters can couple to the motion of a freely suspended h-BN membrane. Here, we propose a scheme where the electronic degree of freedom (d.o.f.) of an embedded color center is coupled to the motion of the hosting h-BN resonator via dispersive forces. We show that the coupling of membrane vibrations to the electronic d.o.f. of the emitter can reach the strong regime. By suitable driving of a three-level Λ-system composed of two spin d.o.f. in the electronic ground state as well as an isolated excited state of the emitter, a multiple electromagnetically induced transparency spectrum becomes available. The experimental feasibility of the efficient vibrational ground-state cooling of the membrane via quantum interference effects in the two-color drive scheme is numerically confirmed. More interestingly, the emission spectrum of the defect exhibits a frequency comb with frequency spacings as small as the fundamental vibrational mode, which finds applications in high-precision spectroscopy.

20.
Phys Rev Lett ; 122(19): 190405, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31144929

ABSTRACT

To describe certain facets of nonclassicality, it is necessary to quantify properties of operations instead of states. This is the case if one wants to quantify how well an operation detects nonclassicality, which is a necessary prerequisite for its use in quantum technologies. To do so rigorously, we build resource theories on the level of operations, exploiting the concept of resource destroying maps. We discuss the two basic ingredients of these resource theories, the free operations and the free superoperations, which are sequential and parallel concatenations with free operations. This leads to defining properties of functionals that are well suited to quantify the resources of operations. We introduce these concepts at the example of coherence. In particular, we present two measures quantifying the ability of an operation to detect, i.e., to use, coherence, one of them with an operational interpretation, and provide methods to evaluate them.

SELECTION OF CITATIONS
SEARCH DETAIL