Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Biol Chem ; 300(1): 105524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043795

ABSTRACT

The renal collecting duct is continuously exposed to a wide spectrum of fluid flow rates and osmotic gradients. Expression of a mechanoactivated Piezo1 channel is the most prominent in the collecting duct. However, the status and regulation of Piezo1 in functionally distinct principal and intercalated cells (PCs and ICs) of the collecting duct remain to be determined. We used pharmacological Piezo1 activation to quantify Piezo1-mediated [Ca2+]i influx and single-channel activity separately in PCs and ICs of freshly isolated collecting ducts with fluorescence imaging and electrophysiological tools. We also employed a variety of systemic treatments to examine their consequences on Piezo1 function in PCs and ICs. Piezo1 selective agonists, Yoda-1 or Jedi-2, induced a significantly greater Ca2+ influx in PCs than in ICs. Using patch clamp analysis, we recorded a Yoda-1-activated nonselective channel with 18.6 ± 0.7 pS conductance on both apical and basolateral membranes. Piezo1 activity in PCs but not ICs was stimulated by short-term diuresis (injections of furosemide) and reduced by antidiuresis (water restriction for 24 h). However, prolonged stimulation of flow by high K+ diet decreased Yoda-1-dependent Ca2+ influx without changes in Piezo1 levels. Water supplementation with NH4Cl to induce metabolic acidosis stimulated Piezo1 activity in ICs but not in PCs. Overall, our results demonstrate functional Piezo1 expression in collecting duct PCs (more) and ICs (less) on both apical and basolateral sides. We also show that acute changes in fluid flow regulate Piezo1-mediated [Ca2+]i influx in PCs, whereas channel activity in ICs responds to systemic acid-base stimuli.


Subject(s)
Calcium , Ion Channels , Kidney Tubules, Collecting , Cell Membrane , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism , Pyrazines/pharmacology , Thiadiazoles/pharmacology , Water/metabolism , Ion Channels/agonists , Ion Channels/metabolism , Animals , Mice , Calcium/metabolism
2.
Am J Physiol Renal Physiol ; 324(6): F603-F616, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37141145

ABSTRACT

The Ca2+-permeable transient receptor potential vanilloid type 4 (TRPV4) channel serves as the sensor of tubular flow, thus being well suited to govern mechanosensitive K+ transport in the distal renal tubule. Here, we directly tested whether the TRPV4 function is significant in affecting K+ balance. We used balance metabolic cage experiments and systemic measurements with different K+ feeding regimens [high (5% K+), regular (0.9% K+), and low (<0.01% K+)] in newly created transgenic mice with selective TRPV4 deletion in the renal tubule (TRPV4fl/fl-Pax8Cre) and their littermate controls (TRPV4fl/fl). Deletion was verified by the absence of TRPV4 protein expression and lack of TRPV4-dependent Ca2+ influx. There were no differences in plasma electrolytes, urinary volume, and K+ levels at baseline. In contrast, plasma K+ levels were significantly elevated in TRPV4fl/fl-Pax8Cre mice on high K+ intake. K+-loaded knockout mice exhibited lower urinary K+ levels than TRPV4fl/fl mice, which was accompanied by higher aldosterone levels by day 7. Moreover, TRPV4fl/fl-Pax8Cre mice had more efficient renal K+ conservation and higher plasma K+ levels in the state of dietary K+ deficiency. H+-K+-ATPase levels were significantly increased in TRPV4fl/fl-Pax8Cre mice on a regular diet and especially on a low-K+ diet, pointing to augmented K+ reabsorption in the collecting duct. Consistently, we found a significantly faster intracellular pH recovery after intracellular acidification, as an index of H+-K+-ATPase activity, in split-opened collecting ducts from TRPV4fl/fl-Pax8Cre mice. In summary, our results demonstrate an indispensable prokaliuretic role of TRPV4 in the renal tubule in controlling K+ balance and urinary K+ excretion during variations in dietary K+ intake. NEW & NOTEWORTHY The mechanoactivated transient receptor potential vanilloid type 4 (TRPV4) channel is expressed in distal tubule segments, where it controls flow-dependent K+ transport. Global TRPV4 deficiency causes impaired adaptation to variations in dietary K+ intake. Here, we demonstrate that renal tubule-specific TRPV4 deletion is sufficient to recapitulate the phenotype by causing antikaliuresis and higher plasma K+ levels in both states of K+ load and deficiency.


Subject(s)
Hypokalemia , Potassium Deficiency , Animals , Mice , Adenosine Triphosphatases , Homeostasis , Hypokalemia/metabolism , Kidney Tubules/metabolism , Kidney Tubules, Distal/metabolism , Mice, Knockout , Mice, Transgenic , Potassium Deficiency/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
3.
FASEB J ; 36(5): e22275, 2022 05.
Article in English | MEDLINE | ID: mdl-35349181

ABSTRACT

The collecting duct is a highly adaptive terminal part of the nephron, which is essential for maintaining systemic homeostasis. Principal and intercalated cells perform different physiological tasks and exhibit distinctive morphology. However, acid-secreting A- and base secreting B-type of intercalated cells cannot be easily separated in functional studies. We used BCECF-sensitive intracellular pH (pHi ) measurements in split-opened collecting ducts followed by immunofluorescent microscopy in WT and intercalated cell-specific ClC-K2-/- mice to demonstrate that ClC-K2 inhibition enables to distinguish signals from A- and B-intercalated cells. We show that ClC-K2 Cl- channel is expressed on the basolateral side of intercalated cells, where it governs Cl- -dependent H+ /HCO3- transport. ClC-K2 blocker, NPPB, caused acidification or alkalization in different subpopulations of intercalated cells in WT but not ClC-K2-/- mice. Immunofluorescent assessment of the same collecting ducts revealed that NPPB increased pHi in AE1-positive A-type and decreased pHi in pendrin-positive B-type of intercalated cells. Induction of metabolic acidosis led to a significantly augmented abundance and H+ secretion in A-type and decreased proton transport in B-type of intercalated cells, whereas metabolic alkalosis caused the opposite changes in intercalated cell function, but did not substantially change their relative abundance. Overall, we show that inhibition of ClC-K2 can be employed to discriminate between A- and B-type of intercalated cells in split-opened collecting duct preparations. We further demonstrate that this method can be used to independently monitor changes in the functional status and abundance of A- and B-type in response to systemic acid/base stimuli.


Subject(s)
Acidosis , Kidney Tubules, Collecting , Acidosis/metabolism , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Kidney Tubules, Collecting/metabolism , Mice , Nephrons/metabolism , Sulfate Transporters/metabolism
4.
Proc Natl Acad Sci U S A ; 117(42): 26470-26481, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33004624

ABSTRACT

The diversity and near universal expression of G protein-coupled receptors (GPCR) reflects their involvement in most physiological processes. The GPCR superfamily is the largest in the human genome, and GPCRs are common pharmaceutical targets. Therefore, uncovering the function of understudied GPCRs provides a wealth of untapped therapeutic potential. We previously identified an adhesion-class GPCR, Gpr116, as one of the most abundant GPCRs in the kidney. Here, we show that Gpr116 is highly expressed in specialized acid-secreting A-intercalated cells (A-ICs) in the kidney using both imaging and functional studies, and we demonstrate in situ receptor activation using a synthetic agonist peptide unique to Gpr116. Kidney-specific knockout (KO) of Gpr116 caused a significant reduction in urine pH (i.e., acidification) accompanied by an increase in blood pH and a decrease in pCO2 compared to WT littermates. Additionally, immunogold electron microscopy shows a greater accumulation of V-ATPase proton pumps at the apical surface of A-ICs in KO mice compared to controls. Furthermore, pretreatment of split-open collecting ducts with the synthetic agonist peptide significantly inhibits proton flux in ICs. These data suggest a tonic inhibitory role for Gpr116 in the regulation of V-ATPase trafficking and urinary acidification. Thus, the absence of Gpr116 results in a primary excretion of acid in KO mouse urine, leading to mild metabolic alkalosis ("renal tubular alkalosis"). In conclusion, we have uncovered a significant role for Gpr116 in kidney physiology, which may further inform studies in other organ systems that express this GPCR, such as the lung, testes, and small intestine.


Subject(s)
Kidney/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Biochemical Phenomena , Biological Transport , Cell Movement/physiology , Epithelial Cells/metabolism , Female , Homeostasis , Humans , Kidney Tubules/metabolism , Male , Mice , Mice, Knockout
5.
J Physiol ; 600(21): 4695-4711, 2022 11.
Article in English | MEDLINE | ID: mdl-36071685

ABSTRACT

Bile acids, originally known to emulsify dietary lipids, are now established signalling molecules that regulate physiological processes. Signalling targets several proteins that include the ion channels involved in regulating intestinal motility and bile viscosity. Studies show that bile acids regulate the epithelial sodium channel (ENaC) in cultured cell models and heterologous expression systems. ENaC plays both local and systemic roles in regulating extracellular fluids. Here we investigated whether bile acids regulate ENaC expressed in native tissues. We found that taurocholic acid and taurohyodeoxycholic acid regulated ENaC in both the distal nephron and distal colon. We also tested the hypothesis that regulation occurs through direct binding. Using photoaffinity labelling, we found evidence for specific binding to both the ß and γ subunits of the channel. In functional experiments, we found that the α subunit was sufficient for regulation. We also found that regulation by at least one bile acid was voltage-sensitive, suggesting that one binding site may be closely associated with the pore-forming helices of the channel. Our data provide evidence that bile acids regulate ENaC by binding to multiple sites to influence the open probability of the channel. KEY POINTS: Recent studies have shown that bile acids regulate the epithelial sodium channel (ENaC) in vitro. Here we investigated whether bile acids regulate ENaC in native tissues and whether bile acids directly bind the channel. We found that bile acids regulate ENaC expressed in the mouse cortical collecting duct and mouse colon by modulating open probability. Photoaffinity labelling experiments showed specific binding to the ß and γ subunits of the channel, while channels comprising only α subunits were sensitive to taurocholic acid in functional experiments using Xenopus oocytes. Taurocholic acid regulation of ENaC was voltage-dependent, providing evidence for binding to pore-forming helices. Our data indicate that bile acids are ENaC regulatory effectors that may have a role in the physiology and pathophysiology of several systems.


Subject(s)
Bile Acids and Salts , Epithelial Sodium Channels , Animals , Mice , Amiloride , Bile Acids and Salts/pharmacology , Bile Acids and Salts/metabolism , Epithelial Sodium Channels/metabolism , Ions/metabolism , Oocytes/physiology , Sodium/metabolism , Taurocholic Acid/metabolism , Xenopus laevis/metabolism , Sodium Channels/metabolism
6.
J Biol Chem ; 296: 100347, 2021.
Article in English | MEDLINE | ID: mdl-33524393

ABSTRACT

The renal collecting duct plays a critical role in setting urinary volume and composition, with principal cells transporting Na+ and K+ and intercalated cells mediating Cl- reabsorption. Published evidence implies Angiotensin II (Ang II) is a potent regulator of the collecting duct apical transport systems in response to systemic volume depletion. However, virtually nothing is known about Ang II actions on the basolateral conductance of principal and intercalated cells. Here, we combined macroscopic and single channel patch clamp recordings from freshly isolated mouse collecting ducts with biochemical and fluorescence methods to demonstrate an acute stimulation of the basolateral Cl- conductance and specifically the ClC-K2 Cl- channel by nanomolar Ang II concentrations in intercalated cells. In contrast, Ang II did not exhibit measurable effects on the basolateral conductance and on Kir4.1/5.1 potassium channel activity in principal cells. Although both Ang II receptors AT1 and AT2 are expressed in collecting duct cells, we show that AT1 receptors were essential for stimulatory actions of Ang II on ClC-K2. Moreover, AT1R-/- mice had decreased renal ClC-K2 expression. We further demonstrated that activation of NADPH oxidases is the major signaling pathway downstream of Ang II-AT1R that leads to stimulation of ClC-K2. Treatment of freshly isolated collecting ducts with Ang II led to production of reactive oxygen species on the same timescale as single channel ClC-K2 activation. Overall, we propose that Ang II-dependent regulation of ClC-K2 in intercalated cells is instrumental for stimulation of Cl- reabsorption by the collecting duct, particularly during hypovolemic states.


Subject(s)
Angiotensin II/metabolism , Anion Transport Proteins/metabolism , Chloride Channels/metabolism , Kidney Tubules, Collecting/metabolism , Reactive Oxygen Species/metabolism , Animals , Male , Mice, Inbred C57BL
7.
Curr Top Membr ; 89: 75-94, 2022.
Article in English | MEDLINE | ID: mdl-36210153

ABSTRACT

Kidneys are central for whole body water and electrolyte balance by first filtering plasma at the glomeruli and then processing the filtrate along the renal nephron until the final urine is produced. Renal nephron epithelial cells mediate transport of water and solutes which is under the control of systemic hormones as well as local mechanical stimuli arising from alterations in fluid flow. TRPV4 is a mechanosensitive Ca2+ channel abundantly expressed in different segments of the renal nephron. The accumulated evidence suggests a critical role for TRPV4 in sensing variations in flow rates. In turn, TRPV4 activation triggers numerous downstream cellular responses stimulated by elevated intracellular Ca2+ concentrations [Ca2+]i. In this review, we discuss the recent concepts in flow-mediated regulation of solute homeostasis by TRPV4 in different segments of renal nephron. Specifically, we summarize the evidence for TRPV4 involvement in endocytosis-mediated albumin uptake in the proximal tubule, reactive oxygen species (ROS) generation in the ascending loop of Henle, and maintaining K+ homeostasis in the connecting tubule/collecting duct. Finally, we outline the function and significance of TRPV4 in the setting of polycystic kidney disease.


Subject(s)
Nephrons , TRPV Cation Channels , Albumins , Hormones , Kidney , Reactive Oxygen Species , Water
8.
Am J Physiol Renal Physiol ; 318(4): F870-F877, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31984792

ABSTRACT

Adenosine plays an important role in various aspects of kidney physiology, but the specific targets and mechanisms of actions are not completely understood. The collecting duct has the highest expression of adenosine receptors, particularly adenosine A1 receptors (A1Rs). Interstitial adenosine levels are greatly increased up to a micromolar range in response to dietary salt loading. We have previously shown that the basolateral membrane of principal cells has primarily K+ conductance mediated by Kir4.1/5.1 channels to mediate K+ recycling and to set up a favorable driving force for Na+/K+ exchange (47). Intercalated cells express the Cl- ClC-K2/b channel mediating transcellular Cl- reabsorption. Using patch-clamp electrophysiology in freshly isolated mouse collecting ducts, we found that acute application of adenosine reversely inhibits ClC-K2/b open probability from 0.31 ± 0.04 to 0.17 ± 0.06 and to 0.10 ± 0.05 for 1 and 10 µM, respectively. In contrast, adenosine (10 µM) had no measureable effect on Kir4.1/5.1 channel activity in principal cells. The inhibitory effect of adenosine on ClC-K2/b was abolished in the presence of the A1R blocker 8-cyclopentyl-1,3-dipropylxanthine (10 µM). Consistently, application of the A1R agonist N6-cyclohexyladenosine (1 µM) recapitulated the inhibitory action of adenosine on ClC-K2/b open probability. The effects of adenosine signaling in the collecting duct were independent from its purinergic counterpartner, ATP, having no measurable actions on ClC-K2/b and Kir4.1/5.1. Overall, we demonstrated that adenosine selectively inhibits ClC-K2/b activity in intercalated cells by targeting A1Rs. We propose that inhibition of transcellular Cl- reabsorption in the collecting duct by adenosine would aid in augmenting NaCl excretion during high salt intake.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Adenosine/pharmacology , Anion Transport Proteins/antagonists & inhibitors , Chloride Channels/antagonists & inhibitors , Chlorides/metabolism , Kidney Tubules, Collecting/drug effects , Receptor, Adenosine A1/drug effects , Renal Reabsorption/drug effects , Animals , Anion Transport Proteins/metabolism , Calcium Signaling/drug effects , Cells, Cultured , Chloride Channels/metabolism , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism , Male , Membrane Potentials/drug effects , Mice, Inbred C57BL , Receptor, Adenosine A1/metabolism
9.
Am J Physiol Renal Physiol ; 319(3): F541-F551, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32744087

ABSTRACT

Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70-80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a-/-) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 µmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a-/- mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a-/- mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.


Subject(s)
Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Animals , Biological Transport/drug effects , Cell Line , Gene Expression Regulation/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Opossums , Parathyroid Hormone/pharmacology , Patch-Clamp Techniques , Random Allocation , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
10.
FASEB J ; 33(2): 2156-2170, 2019 02.
Article in English | MEDLINE | ID: mdl-30252533

ABSTRACT

cAMP is a universal second messenger regulating a plethora of processes in the kidney. Two downstream effectors of cAMP are PKA and exchange protein directly activated by cAMP (Epac), which, unlike PKA, is often linked to elevation of [Ca2+]i. While both Epac isoforms (Epac1 and Epac2) are expressed along the nephron, their relevance in the kidney remains obscure. We combined ratiometric calcium imaging with quantitative immunoblotting, immunofluorescent confocal microscopy, and balance studies in mice lacking Epac1 or Epac2 to determine the role of Epac in renal water-solute handling. Epac1-/- and Epac2-/- mice developed polyuria despite elevated arginine vasopressin levels. We did not detect major deficiencies in arginine vasopressin [Ca2+]i signaling in split-opened collecting ducts or decreases in aquaporin water channel type 2 levels. Instead, sodium-hydrogen exchanger type 3 levels in the proximal tubule were dramatically reduced in Epac1-/- and Epac2-/- mice. Water deprivation revealed persisting polyuria, impaired urinary concentration ability, and augmented urinary excretion of Na+ and urea in both mutant mice. In summary, we report a nonredundant contribution of Epac isoforms to renal function. Deletion of Epac1 and Epac2 decreases sodium-hydrogen exchanger type 3 expression in the proximal tubule, leading to polyuria and osmotic diuresis.-Cherezova, A., Tomilin, V., Buncha, V., Zaika, O., Ortiz, P. A., Mei, F., Cheng, X., Mamenko, M., Pochynyuk, O. Urinary concentrating defect in mice lacking Epac1 or Epac2.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Kidney Concentrating Ability/genetics , Animals , Aquaporin 2/metabolism , Arginine Vasopressin/metabolism , Calcium Signaling , Diuresis , Gene Deletion , Kidney/metabolism , Kidney/physiology , Mice , Mice, Knockout , Osmosis , Polyuria/genetics , Sodium-Hydrogen Exchanger 3/metabolism
11.
Am J Physiol Renal Physiol ; 317(5): F1094-F1097, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31509013

ABSTRACT

cAMP is a critical second messenger of numerous endocrine signals affecting water-electrolyte transport in the renal tubule. Exchange protein directly activated by cAMP (Epac) is a relatively recently discovered downstream effector of cAMP, having the same affinity to the second messenger as protein kinase A, the classical cAMP target. Two Epac isoforms, Epac1 and Epac2, are abundantly expressed in the renal epithelium, where they are thought to regulate water and electrolyte transport, particularly in the proximal tubule and collecting duct. Recent characterization of renal phenotype in mice lacking Epac1 and Epac2 revealed a critical role of the Epac signaling cascade in urinary concentration as well as in Na+ and urea excretion. In this review, we aim to critically summarize current knowledge of Epac relevance for renal function and to discuss the applicability of Epac-based strategies in the regulation of systemic water-electrolyte homeostasis.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Kidney/metabolism , Animals , Cyclic AMP , Gene Expression Regulation , Humans , Protein Isoforms
12.
Am J Physiol Renal Physiol ; 316(5): F948-F956, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30838874

ABSTRACT

Tight regulation of K+ balance is fundamental for normal physiology. Reduced dietary K+ intake, which is common in Western diets, often leads to hypokalemia and associated cardiovascular- and kidney-related pathologies. The distal nephron, and, specifically, the collecting duct (CD), is the major site of controlled K+ reabsorption via H+-K+-ATPase in the state of dietary K+ deficiency. We (Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. Kidney Int 91: 1398-1409, 2017) have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) Ca2+ channel, abundantly expressed in the CD, contributes to renal K+ handling by promoting flow-induced K+ secretion. Here, we investigated a potential role of TRPV4 in controlling H+-K+-ATPase-dependent K+ reabsorption in the CD. Treatment with a K+-deficient diet (<0.01% K+) for 7 days reduced serum K+ levels in wild-type (WT) mice from 4.3 ± 0.2 to 3.3 ± 0.2 mM but not in TRPV4-/- mice (4.3 ± 0.1 and 4.2 ± 0.3 mM, respectively). Furthermore, we detected a significant reduction in 24-h urinary K+ levels in TRPV4-/- compared with WT mice upon switching to K+-deficient diet. TRPV4-/- animals also had significantly more acidic urine on a low-K+ diet, but not on a regular (0.9% K+) or high-K+ (5% K+) diet, which is consistent with increased H+-K+-ATPase activity. Moreover, we detected a greatly accelerated H+-K+-ATPase-dependent intracellular pH extrusion in freshly isolated CDs from TRPV4-/- compared with WT mice fed a K+-deficient diet. Overall, our results demonstrate a novel kaliuretic role of TRPV4 by inhibiting H+-K+-ATPase-dependent K+ reabsorption in the CD. We propose that TRPV4 inhibition could be a novel strategy to manage certain hypokalemic states in clinical settings.


Subject(s)
Hypokalemia/prevention & control , Kidney Tubules, Collecting/metabolism , Potassium Deficiency/metabolism , Potassium, Dietary/metabolism , Renal Reabsorption , TRPV Cation Channels/deficiency , Animals , Disease Models, Animal , Female , Gene Deletion , Hydrogen-Ion Concentration , Hypokalemia/genetics , Hypokalemia/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Potassium Deficiency/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , TRPV Cation Channels/genetics
13.
FASEB J ; 32(8): 4612-4623, 2018 08.
Article in English | MEDLINE | ID: mdl-29553832

ABSTRACT

Autosomal-dominant polycystic kidney disease (ADPKD) is a devastating disorder that is characterized by a progressive decline in renal function as a result of the development of fluid-filled cysts. Defective flow-mediated [Ca2+]i responses and disrupted [Ca2+]i homeostasis have been repeatedly associated with cyst progression in ADPKD. We have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) channel is imperative for flow-mediated [Ca2+]i responses in murine distal renal tubule cells. To determine whether compromised TRPV4 function contributes to aberrant Ca2+ regulation in ADPKD, we assessed TRPV4 function in primary cells that were cultured from ADPKD and normal human kidneys (NHKs). Single-channel TRPV4 activity and TRPV4-dependent Ca2+ influxes were drastically reduced in ADPKD cells, which correlated with distorted [Ca2+]i signaling. Whereas total TRPV4 protein levels were comparable in NHK and ADPKD cells, we detected a marked decrease in TRPV4 glycosylation in ADPKD cells. Tunicamycin-induced deglycosylation inhibited TRPV4 activity and compromised [Ca2+]i signaling in NHK cells. Overall, we demonstrate that TRPV4 glycosylation and channel activity are diminished in human ADPKD cells compared with NHK cells, and that this contributes significantly to the distorted [Ca2+]i dynamics. We propose that TRPV4 stimulation may be beneficial for restoring [Ca2+]i homeostasis in cyst cells, thereby interfering with ADPKD progression.-Tomilin, V., Reif, G. A., Zaika, O., Wallace, D. P., Pochynyuk, O. Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca2+]i homeostasis in human autosomal-dominant polycystic kidney disease cells.


Subject(s)
Calcium/metabolism , Homeostasis/physiology , Polycystic Kidney, Autosomal Dominant/metabolism , TRPV Cation Channels/deficiency , TRPV Cation Channels/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetulus , Glycosylation , Humans , Kidney/metabolism , Middle Aged , Signal Transduction/physiology
14.
J Cell Physiol ; 233(9): 7217-7225, 2018 09.
Article in English | MEDLINE | ID: mdl-29574718

ABSTRACT

ENaC-mediated sodium reabsorption in the collecting duct (CD) is a critical determinant of urinary sodium excretion. Existing evidence suggest direct stimulatory actions of Angiotensin II (Ang II) on ENaC in the CD, independently of the aldosterone-mineralocorticoid receptor (MR) signaling. Deletion of the major renal AT1 receptor isoform, AT1a R, decreases blood pressure and reduces ENaC abundance despite elevated aldosterone levels. The mechanism of this insufficient compensation is not known. Here, we used patch clamp electrophysiology in freshly isolated split-opened CDs to investigate how AT1a R dysfunction compromises functional ENaC activity and its regulation by dietary salt intake. Ang II had no effect on ENaC activity in CDs from AT1a R -/- mice suggesting no complementary contribution of AT2 receptors. We next found that AT1a R deficient mice had lower ENaC activity when fed with low (<0.01% Na+ ) and regular (0.32% Na+ ) but not with high (∼2% Na+ ) salt diet, when compared to the respective values obtained in Wild type (WT) animals. Inhibition of AT1 R with losartan in wild-type animals reproduces the effects of genetic ablation of AT1a R on ENaC activity arguing against contribution of developmental factors. Interestingly, manipulation with aldosterone-MR signaling via deoxycosterone acetate (DOCA) and spironolactone had much reduced influence on ENaC activity upon AT1a R deletion. Consistently, AT1a R -/- mice have a markedly diminished MR abundance in cytosol. Overall, we conclude that AT1a R deficiency elicits a complex inhibitory effect on ENaC activity by attenuating ENaC Po and precluding adequate compensation via aldosterone cascade due to decreased MR availability.


Subject(s)
Epithelial Sodium Channels/metabolism , Kidney Tubules, Collecting/metabolism , Receptor, Angiotensin, Type 1/deficiency , Aldosterone/pharmacology , Angiotensin II/pharmacology , Animals , Losartan/pharmacology , Male , Mice, Inbred C57BL , Receptor, Angiotensin, Type 1/metabolism , Receptors, Mineralocorticoid/metabolism , Signal Transduction/drug effects , Sodium Chloride, Dietary/pharmacology
15.
Pflugers Arch ; 470(2): 339-353, 2018 02.
Article in English | MEDLINE | ID: mdl-29134279

ABSTRACT

The renal collecting duct contains two distinct cell types, principal and intercalated cells, expressing potassium Kir4.1/5.1 (KCNJ10/16) and chloride ClC-K2 (ClC-Kb in humans) channels on their basolateral membrane, respectively. Both channels are thought to play important roles in controlling systemic water-electrolyte balance and blood pressure. However, little is known about mechanisms regulating activity of Kir4.1/5.1 and ClC-K2/b. Here, we employed patch clamp analysis at the single channel and whole cell levels in freshly isolated mouse collecting ducts to investigate regulation of Kir4.1/5.1 and ClC-K2/b by dietary K+ and Cl- intake. Treatment of mice with high K+ and high Cl- diet (6% K+, 5% Cl-) for 1 week significantly increased basolateral K+-selective current, single channel Kir4.1/5.1 activity and induced hyperpolarization of basolateral membrane potential in principal cells when compared to values in mice on a regular diet (0.9% K+, 0.5% Cl-). In contrast, basolateral Cl--selective current and single channel ClC-K2/b activity was markedly decreased in intercalated cells under this condition. Substitution of dietary K+ to Na+ in the presence of high Cl- exerted a similar inhibiting action of ClC-K2/b suggesting that the channel is sensitive to variations in dietary Cl- per se. Cl--sensitive with-no-lysine kinase (WNK) cascade has been recently proposed to orchestrate electrolyte transport in the distal tubule during variations of dietary K+. However, co-expression of WNK1 or its major downstream effector Ste20-related proline-alanine-rich kinase (SPAK) had no effect on ClC-Kb over-expressed in Chinese hamster ovary (CHO) cells. Treatment of mice with high K+ diet without concomitant elevations in dietary Cl- (6% K+, 0.5% Cl-) elicited a comparable increase in basolateral K+-selective current, single channel Kir4.1/5.1 activity in principal cells, but had no significant effect on ClC-K2/b activity in intercalated cells. Furthermore, stimulation of aldosterone signaling by Deoxycorticosterone acetate (DOCA) recapitulated the stimulatory actions of high K+ intake on Kir4.1/5.1 channels in principal cells but was ineffective to alter ClC-K2/b activity and basolateral Cl- conductance in intercalated cells. In summary, we report that variations of dietary K+ and Cl- independently regulate basolateral potassium and chloride conductance in principal and intercalated cells. We propose that such discrete mechanism might contribute to fine-tuning of urinary excretion of electrolytes depending on dietary intake.


Subject(s)
Action Potentials , Chlorides/metabolism , Diet , Kidney Tubules, Collecting/metabolism , Potassium/metabolism , Animals , CHO Cells , Cell Membrane/metabolism , Cell Membrane/physiology , Cells, Cultured , Chloride Channels/metabolism , Chlorides/administration & dosage , Chlorides/pharmacology , Cricetinae , Cricetulus , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/drug effects , Male , Mice , Mice, Inbred C57BL , Potassium/administration & dosage , Potassium/pharmacology , Potassium Channels, Inwardly Rectifying/metabolism
16.
Curr Opin Nephrol Hypertens ; 27(5): 373-378, 2018 09.
Article in English | MEDLINE | ID: mdl-29894319

ABSTRACT

PURPOSE OF REVIEW: Multiple clinical and translational evidence support benefits of high potassium diet; however, there many uncertainties underlying the molecular and cellular mechanisms determining effects of dietary potassium. Kir4.1 and Kir5.1 proteins form a functional heteromer (Kir4.1/Kir5.1), which is the primary inwardly rectifying potassium channel on the basolateral membrane of both distal convoluted tubule (DCT) and the collecting duct principal cells. The purpose of this mini-review is to summarize latest advances in our understanding of the evolution, physiological relevance and mechanisms controlling these channels. RECENT FINDINGS: Kir4.1 and Kir5.1 channels play a critical role in determining electrolyte homeostasis in the kidney and blood pressure, respectively. It was reported that Kir4.1/Kir5.1 serves as potassium sensors in the distal nephron responding to variations in dietary intake and hormonal stimuli. Global and kidney specific knockouts of either channel resulted in hypokalemia and severe cardiorenal phenotypes. Furthermore, knock out of Kir5.1 in Dahl salt-sensitive rat background revealed the crucial role of the Kir4.1/Kir5.1 channel in salt-induced hypertension. SUMMARY: Here, we focus on reviewing novel experimental evidence of the physiological function, expression and hormonal regulation of renal basolateral inwardly rectifying potassium channels. Further investigation of molecular and cellular mechanisms controlling Kir4.1 and Kir4.1/Kir5.1-mediating pathways and development of specific compounds targeting these channels function is essential for proper control of electrolyte homeostasis and blood pressure.


Subject(s)
Kidney Tubules, Distal/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium, Dietary/metabolism , Animals , Blood Pressure/physiology , Humans , Kidney Tubules, Collecting/metabolism , Potassium/blood , Potassium/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels/physiology , Potassium Channels, Inwardly Rectifying/genetics , Potassium, Dietary/blood , Rats , Sodium/blood , Sodium/metabolism , Sodium, Dietary/blood , Sodium, Dietary/metabolism , Water-Electrolyte Balance/physiology , Kir5.1 Channel
18.
Am J Physiol Renal Physiol ; 313(6): F1243-F1253, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28814438

ABSTRACT

Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na+ reabsorption via activation of epithelial Na+ channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na+ handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD (CDPRR-KO). At basal conditions, CDPRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na+ excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg-1·min-1), the increases in systolic BP and diastolic BP were mitigated in CDPRR-KO mice. CDPRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CDPRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments.


Subject(s)
Angiotensin II , Blood Pressure , Hypertension/metabolism , Kidney Tubules, Collecting/metabolism , Natriuresis , Proton-Translocating ATPases/deficiency , Receptors, Cell Surface/deficiency , Renal Elimination , Sodium/metabolism , Animals , Disease Models, Animal , Epithelial Sodium Channels/metabolism , Genetic Predisposition to Disease , Hypertension/genetics , Hypertension/physiopathology , Hypertension/prevention & control , Kidney Tubules, Collecting/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Proteinuria/metabolism , Proteinuria/physiopathology , Proton-Translocating ATPases/genetics , Receptors, Cell Surface/genetics , Renin/metabolism , Sodium Chloride, Dietary/administration & dosage , Sodium Chloride, Dietary/metabolism , Time Factors
19.
Kidney Int ; 91(6): 1398-1409, 2017 06.
Article in English | MEDLINE | ID: mdl-28187982

ABSTRACT

To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.


Subject(s)
Hyperkalemia/metabolism , Kidney Tubules/metabolism , Potassium, Dietary/metabolism , Renal Elimination , TRPV Cation Channels/metabolism , Adaptation, Physiological , Animals , Calcium/metabolism , Genetic Predisposition to Disease , Homeostasis , Hyperkalemia/genetics , Hyperkalemia/physiopathology , Kidney Tubules/physiopathology , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Potassium, Dietary/administration & dosage , Receptors, Mineralocorticoid/metabolism , TRPV Cation Channels/deficiency , TRPV Cation Channels/genetics
20.
Biochem J ; 473(19): 3237-52, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27422782

ABSTRACT

The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.


Subject(s)
Epithelial Sodium Channels/metabolism , Sodium Chloride Symporters/metabolism , Animals , Cell Line , Fluorescence Resonance Energy Transfer , Kidney Cortex/metabolism , Mice , Microscopy, Confocal , Protein Binding , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL