Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Proteomics ; 22(11-12): e2100244, 2022 06.
Article in English | MEDLINE | ID: mdl-35355420

ABSTRACT

A major challenge in managing depression is that antidepressant drugs take a long time to exert their therapeutic effects. For the development of faster-acting treatments, it is crucial to get an improved understanding of the molecular mechanisms underlying antidepressant mode of action. Here, we used a novel mass spectrometry-based workflow to investigate how antidepressant treatment affects brain protein turnover at single-cell and subcellular resolution. We combined stable isotope metabolic labeling, quantitative Tandem Mass Spectrometry (qTMS) and Multi-isotope Imaging Mass Spectrometry (MIMS) to simultaneously quantify and image protein synthesis and turnover in hippocampi of mice treated with the antidepressant paroxetine. We identified changes in turnover of individual hippocampal proteins that reveal altered metabolism-mitochondrial processes and report on subregion-specific turnover patterns upon paroxetine treatment. This workflow can be used to investigate brain protein turnover changes in vivo upon pharmacological interventions at a resolution and precision that has not been possible with other methods to date. Our results reveal acute paroxetine effects on brain protein turnover and shed light on antidepressant mode of action.


Subject(s)
Antidepressive Agents , Paroxetine , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Hippocampus/metabolism , Isotope Labeling/methods , Isotopes/metabolism , Isotopes/pharmacology , Mice , Paroxetine/metabolism , Paroxetine/pharmacology , Tandem Mass Spectrometry
2.
Nature ; 481(7382): 520-4, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22246323

ABSTRACT

Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a ß-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at <10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing ß-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of ß- or γ-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.


Subject(s)
Hair Cells, Auditory, Inner/cytology , Mass Spectrometry/methods , Proteins/metabolism , Stereocilia/metabolism , Actins/metabolism , Animals , Animals, Newborn , Bleaching Agents , Chickens , Epithelium/drug effects , Epithelium/metabolism , Fiducial Markers , Homologous Recombination/drug effects , Mice , Mice, Inbred C57BL , Rana catesbeiana , Tamoxifen/pharmacology
3.
Int J Mass Spectrom ; 422: 42-50, 2017 11.
Article in English | MEDLINE | ID: mdl-29276427

ABSTRACT

In the field of secondary ion mass spectrometry at nanometer scale (NanoSIMS), configuration of parallel detectors to routinely measure isotope ratios in sub-100 nm domains brings classical stable isotope tracer studies from the whole tissue level down to the suborganelle level. Over the past decade, the marriage of stable isotope tracers with NanoSIMS has been applied to a range of fundamental biological questions that were largely inaccessible by other means. Although multiplexed measurement of different stable isotope tracers is feasible, in practice there remains a gap in the current analytical capacity to efficiently measure stable isotopes commonly utilized in tracer studies. One such example is the measurement of deuterated tracers. The most obvious approach to measuring deuterium/hydrogen isotope ratios is at mass 2/1. However, the radius of the magnetic sector limits concomitant measurement of other masses critical to multiplexed exploration of biological samples. Here we determine the experimental parameters to measure deuterated tracers in biological samples using the C2H- polyatomic ion species (C2D-/C2H-) while operating the NanoSIMS at a reduced Mass Resolving Power of 14,000. Through control of the sputtering parameters, we demonstrate that there is an analytical window during which the C2D-/C2H- isotope ratio can be measured with sufficient precision for biological studies where the degree of D-labeling is typically well above natural abundance. We provide validation of this method by comparing the C2D measurement of D-water labeling in the murine small intestine relative to measurements of native D/H conducted in the same analytical fields. Additional proof-of-concept demonstrations include measurement of D-water, D-glucose, and D-thymidine in biological specimens. Therefore, this study provides a practical template for deuterium-based tracer studies in biological systems.

4.
PLoS One ; 7(8): e42267, 2012.
Article in English | MEDLINE | ID: mdl-22952592

ABSTRACT

The prevalence of genetically engineered mice in medical research has led to ever increasing storage costs. Trehalose has a significant beneficial effect in preserving the developmental potential of mouse sperm following partial desiccation and storage at temperatures above freezing. Using multi-isotope imaging mass spectrometry, we are able to image and measure trehalose in individual spermatozoa. We provide the first evidence that trehalose penetrates the nucleus of a mammalian cell, permitting tolerance to desiccation. These results have broad implications for long-term storage of mammalian cells.


Subject(s)
Cell Nucleus/diagnostic imaging , Mass Spectrometry/methods , Oxygen Isotopes/pharmacology , Semen Preservation/methods , Spermatozoa/diagnostic imaging , Trehalose/chemistry , Animals , Cell Nucleus/metabolism , Chromatin/metabolism , Desiccation/methods , Genetic Engineering/methods , Imaging, Three-Dimensional/methods , Male , Mice , Radionuclide Imaging , Spermatozoa/metabolism , Temperature
5.
PLoS One ; 7(2): e30576, 2012.
Article in English | MEDLINE | ID: mdl-22347386

ABSTRACT

Multi-isotope imaging mass spectrometry (MIMS) associates secondary ion mass spectrometry (SIMS) with detection of several atomic masses, the use of stable isotopes as labels, and affiliated quantitative image-analysis software. By associating image and measure, MIMS allows one to obtain quantitative information about biological processes in sub-cellular domains. MIMS can be applied to a wide range of biomedical problems, in particular metabolism and cell fate [1], [2], [3]. In order to obtain morphologically pertinent data from MIMS images, we have to define regions of interest (ROIs). ROIs are drawn by hand, a tedious and time-consuming process. We have developed and successfully applied a support vector machine (SVM) for segmentation of MIMS images that allows fast, semi-automatic boundary detection of regions of interests. Using the SVM, high-quality ROIs (as compared to an expert's manual delineation) were obtained for 2 types of images derived from unrelated data sets. This automation simplifies, accelerates and improves the post-processing analysis of MIMS images. This approach has been integrated into "Open MIMS," an ImageJ-plugin for comprehensive analysis of MIMS images that is available online at http://www.nrims.hms.harvard.edu/NRIMS_ImageJ.php.


Subject(s)
Diagnostic Imaging/methods , Mass Spectrometry/methods , Support Vector Machine , Isotopes , Methods , Software
SELECTION OF CITATIONS
SEARCH DETAIL