Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Am Chem Soc ; 135(7): 2435-8, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23360327

ABSTRACT

Diamond anvil cell (DAC), synchrotron X-ray diffraction (XRD), and small-angle X-ray scattering (SAXS) techniques are used to probe the composition inside hollow γ-Fe(3)O(4) nanoparticles (NPs). SAXS experiments on 5.2, 13.3, and 13.8 nm hollow-shell γ-Fe(3)O(4) NPs, and 6 nm core/14.8 nm hollow-shell Au/Fe(3)O(4) NPs, reveal the significantly high (higher than solvent) electron density of the void inside the hollow shell. In high-pressure DAC experiments using Ne as pressure-transmitting medium, formation of nanocrystalline Ne inside hollow NPs is not detected by XRD, indicating that the oxide shell is impenetrable. Also, FTIR analysis on solutions of hollow-shell γ-Fe(3)O(4) NPs fragmented upon refluxing shows no evidence of organic molecules from the void inside, excluding the possibility that organic molecules get through the iron oxide shell during synthesis. High-pressure DAC experiments on Au/Fe(3)O(4) core/hollow-shell NPs show good transmittance of the external pressure to the gold core, indicating the presence of the pressure-transmitting medium in the gap between the core and the hollow shell. Overall, our data reveal the presence of most likely small fragments of iron and/or iron oxide in the void of the hollow NPs. The iron oxide shell seems to be non-porous and impenetrable by gases and liquids.

2.
Phys Rev Lett ; 110(7): 078304, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166416

ABSTRACT

Experimental and theoretical studies on the compositional dependence of stability and compressibility in lithiated cubic titania are presented. The crystalline-to-amorphous phase transition pressure increases monotonically with Li concentration (from ∼17.5 GPa for delithiated to no phase transition for fully lithiated cubic titania up to 60 GPa). The associated enhancement in structural stability is postulated to arise from a vacancy filling mechanism in which an applied pressure drives interstitial Li ions to vacancy sites in the oxide interior. The results are of significance for understanding mechanisms of structural response of metal oxide electrode materials at high pressures as well as emerging energy storage technologies utilizing such materials.

3.
Nano Lett ; 12(5): 2429-35, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22468698

ABSTRACT

Material design in terms of their morphologies other than solid nanoparticles can lead to more advanced properties. At the example of iron oxide, we explored the electrochemical properties of hollow nanoparticles with an application as a cathode and anode. Such nanoparticles contain very high concentration of cation vacancies that can be efficiently utilized for reversible Li ion intercalation without structural change. Cycling in high voltage range results in high capacity (∼132 mAh/g at 2.5 V), 99.7% Coulombic efficiency, superior rate performance (133 mAh/g at 3000 mA/g) and excellent stability (no fading at fast rate during more than 500 cycles). Cation vacancies in hollow iron oxide nanoparticles are also found to be responsible for the enhanced capacity in the conversion reactions. We monitored in situ structural transformation of hollow iron oxide nanoparticles by synchrotron X-ray absorption and diffraction techniques that provided us clear understanding of the lithium intercalation processes during electrochemical cycling.

4.
Nano Lett ; 12(8): 4200-5, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22757779

ABSTRACT

A lack of consensus persists regarding the origin of photoluminescence in silicon nanocrystals. Here we report pressure-dependences of X-ray diffraction and photoluminescence from alkane-terminated colloidal particles. We determine the diamond-phase bulk modulus, observe multiple phase transitions, and importantly find a systematic photoluminescence red shift that matches the X(conduction)-to-Γ(valence) transition of bulk crystalline silicon. These results, reinforced by calculations, suggest that the efficient photoluminescence, frequently attributed to defects, arises instead from core-states that remain highly indirect despite quantum confinement.

5.
Nano Lett ; 11(2): 579-88, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21175220

ABSTRACT

We report here combined quasi-hydrostatic high-pressure small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) studies on faceted 3D supercrystals (SCs) self-assembled from colloidal 7.0 nm spherical PbS nanocrystals (NCs). Diamond anvil cell (DAC) SAXS experiments in the pressure range from ambient to 12.5 GPa revealed nearly perfect structural stability of the SCs, with face-centered cubic organization of the NCs. Pressure-induced ordering (annealing effect) of the superstructure was observed. The ambient pressure bulk modulus of the SCs was calculated to be ∼5 GPa for compression and ∼14.5 GPa for decompression from fitting of Vinet and Birch-Murnaghan equations of state. XRD measurements revealed strong preferential crystallographic orientation of the NCs through all phase transformations to as high as 55 GPa without any indication of NC sintering. The first phase transition pressure of the NCs was found between 8.1 and 9.2 GPa and proceeds through homogeneous nucleation. Bulk modulus of PbS NCs was calculated to be ∼51 GPa based on fitting to the equations of state (K(PbS,bulk) ∼ 51-57 GPa). Closest surface-to-surface distance between the NCs in the SCs was calculated based on combined XRD and SAXS data, to reversibly tune from ∼1.56 nm to ∼0.9-0.92 nm and back to ∼1.36 nm in the ambient-12.5 GPa-ambient pressure cycle. The bulk modulus of the ligand matrix was extrapolated to be ∼2.2-2.95 GPa. These results show a general method of tuning NC interactions in packed nanoparticle solids.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Selenium Compounds/chemical synthesis , Elastic Modulus , Lead , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Pressure , Surface Properties
6.
Nano Lett ; 10(7): 2363-7, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20515036

ABSTRACT

We report the first nanoindentation studies of well-ordered nanocrystal supercrystals composed of 7 nm lead sulfide nanocrystals stabilized with oleic acid ligands as a model system. Their modulus and hardness were found to be similar to hard polymers at 1.7 GPa and 70 MPa, respectively, and the fracture toughness was 40 KPa/m(1/2), revealing the brittle nature of these materials. The mechanical properties are dominated by the organic capping agents surrounding the inorganic cores. The close-packed structure distributes stress evenly increasing the modulus and hardness. The relatively short ligands are not likely to be highly interdigitated leading to low dissipation during crack propagation and a low-fracture toughness value.

7.
J Am Chem Soc ; 132(26): 8953-60, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20550200

ABSTRACT

Chemically synthesized PbS, CdSe, and CoPt(3) nanocrystals (NCs) were self-assembled into highly periodic supercrystals. Using the combination of small-angle X-ray scattering, X-ray photoelectron spectroscopy, infrared spectroscopy, thermogravimetric analysis, and nanoindentation, we correlated the mechanical properties of the supercrystals with the NC size, capping ligands, and degree of ordering. We found that such structures have elastic moduli and hardnesses in the range of approximately 0.2-6 GPa and 10-450 MPa, respectively, which are analogous to strong polymers. The high degree of ordering characteristic to supercrystals was found to lead to more than 2-fold increase in hardnesses and elastic moduli due to tighter packing of the NCs, and smaller interparticle distance. The nature of surface ligands also significantly affects the mechanical properties of NCs solids. The experiments with series of 4.7, 7.1, and 13 nm PbS NCs revealed a direct relationship between the core size and hardness/modulus, analogous to the nanoparticle-filled polymer composites. This observation suggests that the matrices of organic ligands have properties similar to polymers. The effective moduli of the ligand matrices were calculated to be in the range of approximately 0.1-0.7 GPa.

8.
ACS Nano ; 14(11): 14989-14998, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33073574

ABSTRACT

We show that the self-assembly of monodisperse CdSe nanocrystals synthesized at lower temperature (∼310 °C) into three-dimensional supercrystals results in the formation of separate regions within the supercrystals that display photoluminescence at two distinctly different wavelengths. Specifically, the central portions of the supercrystals display photoluminescence and absorption in the orange region of the spectrum, around 585 nm, compared to the 575 nm photoluminescence maximum for the nanocrystals dispersed in toluene. Distinct domains on the surfaces and edges of the supercrystals, by contrast, display photoluminescence and absorption in the green region of the spectrum, around 570 nm. We attribute the different-colored domains to two subpopulations of NCs in the monodisperse ensemble: the nanocrystals in the "orange" regions are chemically stable, whereas the nanocrystals in the "green" regions are partially oxidized. The susceptibility of the "green" nanocrystals to oxidation indicates a lower coverage of capping molecules on these nanocrystals. We propose that the two subpopulations correspond to nanocrystals with different surfaces that we attribute to the polytypism of CdSe.

9.
J Am Chem Soc ; 131(45): 16386-8, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19863066

ABSTRACT

We evaluated the difference between randomly packed NCs (disordered films), periodic films, and three-dimensional crystals in terms of their lattice structure and interparticle spacing using time-resolved small-angle X-ray scattering (SAXS) technique. The work was performed on nanocrystal solids formed by 7 nm PbS nanocrystals capped with oleic acid. We have found that interparticle spacing in faceted three-dimensional crystals is approximately 25% smaller as compared with three-dimensional films formed by solvent evaporation. We showed that interparticle spacing in faceted three-dimensional crystals is significantly smaller than the length of a fully extended molecule of oleic acid, and hence, full interdigitation of molecules from neighboring particle is doubtful. Also we demonstrated that postpreparative mild thermal treatment allows further manipulation of interparticle spacing.

10.
Small ; 5(10): 1213-21, 2009 May.
Article in English | MEDLINE | ID: mdl-19263430

ABSTRACT

Common 2D cell cultures do not adequately represent the functions of 3D tissues that have extensive cell-cell and cell-matrix interactions, as well as markedly different diffusion/transport conditions. Hence, testing cytotoxicity in 2D cultures may not accurately reflect the actual toxicity of nanoparticles (NPs) and other nanostructures in the body. To obtain more adequate and detailed information about NP-tissue interactions, we here introduce a 3D-spheroid-culture-based NP toxicology testing system. Hydrogel inverted colloidal crystal (ICC) scaffolds are used to create a physiologically relevant and standardized 3D liver tissue spheroid model for in vitro assay application. Toxicity of CdTe and Au NPs are tested in both 2D and 3D spheroid cultures. The results reveal that NP toxic effects are significantly reduced in the spheroid culture when compared to the 2D culture data. Tissue-like morphology and phenotypic change are identified to be the major factors in diminishing toxicity. Acting as an intermediate stage bridging in vitro 2D and in vivo, our in vitro 3D cell-culture model would extend current cellular level cytotoxicity to the tissue level, thereby improving the predictive power of in vitro NP toxicology.


Subject(s)
Nanoparticles/toxicity , Spheroids, Cellular/drug effects , Toxicity Tests , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colloids , Crystallization , Formazans , Humans , Kinetics , L-Lactate Dehydrogenase/metabolism , Liver/cytology , Liver/drug effects , Liver/ultrastructure , Spheroids, Cellular/cytology , Spheroids, Cellular/ultrastructure , Tetrazolium Salts , Tumor Cells, Cultured
11.
Langmuir ; 25(24): 14093-9, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19824626

ABSTRACT

Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , Coated Materials, Biocompatible/chemistry , Polyurethanes/chemistry , Animals , Cells , Humans , Nanostructures
12.
Nanoscale ; 11(22): 10655-10666, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-30839029

ABSTRACT

Precise engineering of nanoparticle superlattices (NPSLs) for energy applications requires a molecular-level understanding of the physical factors governing their morphology, periodicity, mechanics, and response to external stimuli. Such knowledge, particularly the impact of ligand dynamics on physical behavior of NPSLs, is still in its infancy. Here, we combine coarse-grained molecular dynamics simulations, and small angle X-ray scattering experiments in a diamond anvil cell to demonstrate that coverage density of capping ligands (i.e., number of ligands per unit area of a nanoparticle's surface), strongly influences the structure, elasticity, and high-pressure behavior of NPSLs using face-centered cubic PbS-NPSLs as a representative example. We demonstrate that ligand coverage density dictates (a) the extent of diffusion of ligands over NP surfaces, (b) spatial distribution of the ligands in the interstitial spaces between neighboring NPs, and (c) the fraction of ligands that interdigitate across different nanoparticles. We find that below a critical coverage density (1.8 nm-2 for 7 nm PbS NPs capped with oleic acid), NPSLs collapse to form disordered aggregates via sintering, even under ambient conditions. Above the threshold ligand coverage density, NPSLs surprisingly preserve their crystalline order even under high applied pressures (∼40-55 GPa), and show a completely reversible pressure behavior. This opens the possibility of reversibly manipulating lattice spacing of NPSLs, and in turn, finely tuning their collective electronic, optical, thermo-mechanical, and magnetic properties.

13.
J Am Chem Soc ; 130(12): 3748-9, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-18321111

ABSTRACT

The exponentially growing layer-by-layer (LBL) films made from poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) were used to load and unload the CdTe nanoparticles (NPs). The reversible loading of NPs were investigated through UV-vis studies and further confirmed by confocal microscopy. In addition the LBL films were also compared for the release kinetics for pH 9 and 7 and films capped with (PDDA-PSS)10 layers. The amount of released particles at pH 9 was found to be at least 2 orders of magnitude higher than those at pH 7 and with (PDDA-PSS)10 capped layers after 25 h. This variation in film response for CdTe-particle release presents a route for studies in which highly swollen exponentially growing LBL films can be loaded with functionalized NPs for biological applications and explored as carriers to hold the NPs inside the films for self-assembly.


Subject(s)
Acrylic Resins/chemistry , Membranes, Artificial , Nanoparticles/chemistry , Polyethylenes/chemistry , Quaternary Ammonium Compounds/chemistry , Acrylic Resins/chemical synthesis , Adsorption , Electrolytes/chemistry , Particle Size , Polyethylenes/chemical synthesis , Quaternary Ammonium Compounds/chemical synthesis , Surface Properties
14.
J Phys Chem B ; 112(46): 14359-63, 2008 Nov 20.
Article in English | MEDLINE | ID: mdl-18590319

ABSTRACT

The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.


Subject(s)
Calcium Carbonate/chemistry , Light , Nanocomposites/chemistry , Nanotechnology , Bentonite/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Polyvinyl Alcohol/chemistry , Spectrophotometry, Ultraviolet
16.
Nat Nanotechnol ; 6(9): 580-7, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21857686

ABSTRACT

Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.

17.
Science ; 327(5971): 1355-9, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20150443

ABSTRACT

The collective properties of nanoparticles manifest in their ability to self-organize into complex microscale structures. Slow oxidation of tellurium ions in cadmium telluride (CdTe) nanoparticles results in the assembly of 1- to 4-micrometer-long flat ribbons made of several layers of individual cadmium sulfide (CdS)/CdTe nanocrystals. Twisting of the ribbons with an equal distribution of left and right helices was induced by illumination with visible light. The pitch lengths (250 to 1500 nanometers) varied with illumination dose, and the twisting was associated with the relief of mechanical shear stress in assembled ribbons caused by photooxidation of CdS. Unusual shapes of multiparticle assemblies, such as ellipsoidal clouds, dog-bone agglomerates, and ribbon bunches, were observed as intermediate stages. Computer simulations revealed that the balance between attraction and electrostatic repulsion determines the resulting geometry and dimensionality of the nanoparticle assemblies.


Subject(s)
Light , Metal Nanoparticles/ultrastructure , Quantum Dots , Cadmium Compounds/chemistry , Computer Simulation , Metal Nanoparticles/chemistry , Microscopy, Electron , Oxidation-Reduction , Spectrometry, X-Ray Emission , Sulfides/chemistry , Tellurium/chemistry
18.
ACS Nano ; 3(7): 1711-22, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19591447

ABSTRACT

Efficient coupling of mechanical properties of SWNTs with the matrix leading to the transfer of unique mechanical properties of SWNTs to the macroscopic composites is a tremendous challenge of today's materials science. The typical mechanical properties of known SWNT composites, such as strength, stiffness, and toughness, are assessed in an introductory survey where we focused on concrete numerical parameters characterizing mechanical properties. Obtaining ideal stress transfer will require fine optimization of nanotube-polymer interface. SWNT nanocomposites were made here by layer-by-layer (LBL) assembly with poly(vinyl alcohol) (PVA), and the first example of optimization in respect to key parameters determining the connectivity at the graphene-polymer interface, namely, degree of SWNT oxidation and cross-linking chemistry, was demonstrated. The resulting SWNT-PVA composites demonstrated tensile strength (σ(ult)) = 504.5 ± 67.3 MPa, stiffness (E) = 15.6 ± 3.8 GPa, and toughness (K) = 121.2 ± 19.2 J/g with maximum values recorded at σ(ult) = 600.1 MPa, E = 20.6 GPa, and K = 152.1 J/g. This represents the strongest and stiffest nonfibrous SWNT composites made to date outperforming other bulk composites by 2-10 times. Its high performance is attributed to both high nanotube content and efficient stress transfer. The resulting LBL composite is also one of the toughest in this category of materials and exceeding the toughness of Kevlar by 3-fold. Our observation suggests that the strengthening and toughening mechanism originates from the synergistic combination of high degree of SWNT exfoliation, efficient SWNT-PVA binding, crack surface roughening, and fairly efficient distribution of local stress over the SWNT network. The need for a multiscale approach in designing SWNT composites is advocated.

19.
Rev Sci Instrum ; 80(2): 023903, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19256658

ABSTRACT

We present the design and verification of a desktop system for the automated production of nanostructured thin films via spin-assisted layer-by-layer (spin-LBL) assembly. The utility of this system is demonstrated by fabricating polyvinyl alcohol/clay nanocomposites. Ellipsometry measurements demonstrate that the automated spin-LBL method creates composites with bilayer thickness and growth rate comparable to traditional dip-LBL; however, the cycle time of the spin-LBL method is an order of magnitude faster. Small angle X-ray scattering analysis shows that the clay platelets in spin-LBL nanocomposites are more highly aligned than in dip-LBL composites. This method can significantly increase the throughput of laboratory-scale LBL discovery and processing, can enable testing of functional properties of LBL nanocomposites over wafer-scale areas, and can be scaled to larger substrates for commercial production.


Subject(s)
Centrifugation/instrumentation , Flow Injection Analysis/instrumentation , Membranes, Artificial , Nanostructures/chemistry , Nanotechnology/instrumentation , Robotics/instrumentation , Adsorption , Centrifugation/methods , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Flow Injection Analysis/methods , Nanostructures/ultrastructure , Nanotechnology/methods , Reproducibility of Results , Robotics/methods , Sensitivity and Specificity , Specimen Handling/instrumentation , Specimen Handling/methods
20.
ACS Nano ; 3(6): 1564-72, 2009 Jun 23.
Article in English | MEDLINE | ID: mdl-19453145

ABSTRACT

Layer-by-layer assembly (LBL) can generate unique materials with high degrees of nanoscale organization and excellent mechanical, electrical, and optical properties. The typical nanometer scale thicknesses restrict their utility to thin films and coatings. Preparation of macroscale nanocomposites will indicate a paradigm change in the practice of LBL, materials manufacturing, and multiscale organization of nanocomponents. Such materials were made in this study via consolidation of individual LBL sheets from polyurethane. Substantial enhancement of mechanical properties after consolidation was observed. The resulting laminates are homogeneous, transparent, and highly ductile and display nearly 3x higher strength and toughness than their components. Hierarchically organized composites combining structural features from 1 to 1 000 000 nm at six different levels of dimensionality with a high degree of structural control at every level can be obtained. The functionality of the resulting fluorescent sandwiches of different colors makes possible mechanical deformation imaging with submicrometer resolution in real time and 3D capabilities.

SELECTION OF CITATIONS
SEARCH DETAIL