Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551266

ABSTRACT

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Proteome/analysis , Proteomics/methods , Azepines/chemistry , Azepines/metabolism , Azepines/pharmacology , Cell Line , Chromatography, High Pressure Liquid , Cluster Analysis , Estradiol/pharmacology , Humans , Isotope Labeling , Jurkat Cells , MCF-7 Cells , Neoplasm Proteins/metabolism , Proteins/antagonists & inhibitors , Proteins/metabolism , Proteolysis/drug effects , Receptors, Estrogen/metabolism , Tandem Mass Spectrometry , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
2.
Eur Respir J ; 58(1)2021 07.
Article in English | MEDLINE | ID: mdl-33361096

ABSTRACT

Fibrosis can affect any organ, resulting in the loss of tissue architecture and function with often life-threatening consequences. Pathologically, fibrosis is characterised by the expansion of connective tissue due to excessive deposition of extracellular matrix (ECM) proteins, including the fibrillar forms of collagen. A significant limitation for discovering cures for fibrosis is the availability of suitable human models and techniques to quantify mature fibrillar collagen deposition as close as possible to human physiological conditions.Here we have extensively characterised an ex vivo cultured human lung tissue-derived, precision-cut lung slices (hPCLS) model using label-free second harmonic generation (SHG) light microscopy to quantify fibrillar collagen deposition and mass spectrometry-based techniques to obtain a proteomic and metabolomic fingerprint of hPCLS in ex vivo culture.We demonstrate that hPCLS are viable and metabolically active, with mesenchymal, epithelial, endothelial and immune cell types surviving for at least 2 weeks in ex vivo culture. Analysis of hPCLS-conditioned supernatants showed a strong induction of pulmonary fibrosis-related ECM proteins upon transforming growth factor-ß1 (TGF-ß1) stimulation. This upregulation of ECM proteins was not translated into an increased deposition of fibrillar collagen. In support of this observation, we revealed the presence of a pro-ECM degradation activity in our ex vivo cultures of hPCLS, inhibition of which by a metalloproteinase inhibitor resulted in increased collagen deposition in response to TGF-ß1 stimulation.Together the data show that an integrated approach of measuring soluble pro-fibrotic markers alongside quantitative SHG-based analysis of fibrillar collagen is a valuable tool for studying pro-fibrotic signalling and testing anti-fibrotic agents.


Subject(s)
Microscopy , Pulmonary Fibrosis , Fibrosis , Humans , Lung/pathology , Proteomics , Pulmonary Fibrosis/pathology , Transforming Growth Factor beta1
3.
Planta Med ; 83(12-13): 1020-1027, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28403501

ABSTRACT

Boswellic acids constitute a group of unique pentacyclic triterpene acids from Boswellia serrata with multiple pharmacological activities that confer them anti-inflammatory and anti-tumoral properties. A subgroup of boswellic acids, characterized by an 11-keto group, elevates intracellular Ca2+ concentrations [Ca2+]i and causes moderate aggregation of human platelets. How different BAs and their mixtures in pharmacological preparations affect these parameters in activated platelets has not been addressed, so far. Here, we show that boswellic acids either antagonize or induce Ca2+ mobilization and platelet aggregation depending on defined structural determinants with inductive effects predominating for a B. serrata gum resin extract. 3-O-Acetyl-11-keto-ß-boswellic acid potently suppressed Ca2+ mobilization (IC50 = 6 µM) and aggregation (IC50 = 1 µM) when platelets were activated by collagen or the thromboxane A2 receptor agonist U-46619, but not upon thrombin. In contrast, ß-boswellic acid and 3-O-acetyl-ß-boswellic acid, which lack the 11-keto moiety, were weak inhibitors of agonist-induced platelet responses, but instead they elicited elevation of [Ca2+]i and aggregation of platelets (≥ 3 µM). 11-Keto-ß-boswellic acid, the structural intermediate between 3-O-acetyl-11-keto-ß-boswellic acid and ß-boswellic acid, was essentially inactive independent of the experimental conditions. Together, our study unravels the complex agonizing and antagonizing properties of boswellic acids on human platelets in pharmacologically relevant preparations of B. serrata gum extracts and prompts for careful evaluation of the safety of such extracts as herbal medicine in cardiovascular risk patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Boswellia/chemistry , Calcium/metabolism , Plant Extracts/pharmacology , Triterpenes/pharmacology , Anti-Inflammatory Agents/chemistry , Blood Platelets/drug effects , Humans , Plant Extracts/chemistry , Structure-Activity Relationship , Triterpenes/chemistry
4.
J Immunol ; 183(5): 3433-42, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19648270

ABSTRACT

Frankincense preparations, used in folk medicine to cure inflammatory diseases, showed anti-inflammatory effectiveness in animal models and clinical trials. Boswellic acids (BAs) constitute major pharmacological principles of frankincense, but their targets and the underlying molecular modes of action are still unclear. Using a BA-affinity Sepharose matrix, a 26-kDa protein was selectively precipitated from human neutrophils and identified as the lysosomal protease cathepsin G (catG) by mass spectrometry (MALDI-TOF) and by immunological analysis. In rigid automated molecular docking experiments BAs tightly bound to the active center of catG, occupying the same part of the binding site as the synthetic catG inhibitor JNJ-10311795 (2-[3-[methyl[1-(2-naphthoyl)piperidin-4-yl]amino]carbonyl)-2-naphthyl]-1-(1-naphthyl)-2-oxoethylphosphonic acid). BAs potently suppressed the proteolytic activity of catG (IC(50) of approximately 600 nM) in a competitive and reversible manner. Related serine proteases were significantly less sensitive against BAs (leukocyte elastase, chymotrypsin, proteinase-3) or not affected (tryptase, chymase). BAs inhibited chemoinvasion but not chemotaxis of challenged neutrophils, and they suppressed Ca(2+) mobilization in human platelets induced by isolated catG or by catG released from activated neutrophils. Finally, oral administration of defined frankincense extracts significantly reduced catG activities in human blood ex vivo vs placebo. In conclusion, we show that catG is a functional and pharmacologically relevant target of BAs, and interference with catG could explain some of the anti-inflammatory properties of frankincense.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Boswellia/physiology , Cathepsins/metabolism , Serine Endopeptidases/metabolism , Triterpenes/pharmacology , Adult , Amino Acid Sequence , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Binding, Competitive , Boswellia/metabolism , Cathepsin G , Cathepsins/antagonists & inhibitors , Cathepsins/blood , Drug Delivery Systems , Humans , Hydrolysis/drug effects , Molecular Sequence Data , Plant Extracts/administration & dosage , Plant Extracts/metabolism , Plant Extracts/pharmacology , Protein Binding , Serine Endopeptidases/blood , Triterpenes/administration & dosage , Triterpenes/metabolism
5.
J Biol Chem ; 284(31): 21077-89, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19509298

ABSTRACT

Lipoxygenase (LO) enzymes catalyze the conversion of arachidonic acid (AA) into biologically active lipid mediators. Two members, 12/15-LO and 5-LO, regulate inflammatory responses and have been studied for their roles in atherogenesis. Both 12/15-LO and 5-LO inhibitors have been suggested as potential therapy to limit the development of atherosclerotic lesions. Here we used a genetic strategy to disrupt both 12/15-LO and 5-LO on an apolipoprotein E (apoE) atherosclerosis-susceptible background to study the impact of dual LO blockade in atherosclerosis and inflammation. Resident peritoneal macrophages are the major cell type that expresses both LO enzymes, and we verified their absence in dual LO-deficient mice. Examination of AA conversion by phorbol myristate acetate-primed and A23187-challenged macrophages from dual LO-deficient mice revealed extensive accumulation of AA with virtually no diversion into the most common cyclooxygenase (COX) products measured (prostaglandin E2 and thromboxane B2). Instead the COX-1 by-products 11-hydroxy-eicosatetraenoic acid (HETE) and 15-HETE were elevated. The interrelationship between the two LO pathways in combination with COX-1 inhibition (SC-560) also revealed striking patterns of unique substrate utilization. 5-LO- and dual LO-deficient mice exhibited an attenuated response to zymosan-induced peritoneal inflammation, emphasizing roles for 5-LO in regulating vascular permeability. We observed gender-specific attenuation of atheroma formation at 6 months of age at both the aortic root and throughout the entire aorta in chow-fed female dual LO-deficient mice. We propose that some of the inconsistent data obtained with single LO-deficient mice could be attributable to macrophage-specific patterns of altered AA metabolism.


Subject(s)
Apolipoproteins E/deficiency , Arachidonate 12-Lipoxygenase/deficiency , Arachidonate 15-Lipoxygenase/deficiency , Arachidonate 5-Lipoxygenase/deficiency , Arachidonic Acid/metabolism , Atherosclerosis/prevention & control , Macrophages, Peritoneal/enzymology , Peritonitis/prevention & control , Animals , Aorta/enzymology , Aorta/pathology , Apolipoproteins E/blood , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Atherosclerosis/blood , Atherosclerosis/complications , Atherosclerosis/enzymology , Eicosanoids/metabolism , Female , Gene Expression Regulation, Enzymologic , Mice , Mice, Knockout , Organ Size , Peritoneal Lavage , Peritonitis/blood , Peritonitis/complications , Peritonitis/enzymology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spleen/pathology
6.
Nat Biotechnol ; 38(3): 303-308, 2020 03.
Article in English | MEDLINE | ID: mdl-31959954

ABSTRACT

Monitoring drug-target interactions with methods such as the cellular thermal-shift assay (CETSA) is well established for simple cell systems but remains challenging in vivo. Here we introduce tissue thermal proteome profiling (tissue-TPP), which measures binding of small-molecule drugs to proteins in tissue samples from drug-treated animals by detecting changes in protein thermal stability using quantitative mass spectrometry. We report organ-specific, proteome-wide thermal stability maps and derive target profiles of the non-covalent histone deacetylase inhibitor panobinostat in rat liver, lung, kidney and spleen and of the B-Raf inhibitor vemurafenib in mouse testis. In addition, we devised blood-CETSA and blood-TPP and applied it to measure target and off-target engagement of panobinostat and the BET family inhibitor JQ1 directly in whole blood. Blood-TPP analysis of panobinostat confirmed its binding to known targets and also revealed thermal stabilization of the zinc-finger transcription factor ZNF512. These methods will help to elucidate the mechanisms of drug action in vivo.


Subject(s)
Blood/metabolism , Proteome/chemistry , Proteome/metabolism , Small Molecule Libraries/administration & dosage , Animals , Azepines/administration & dosage , Azepines/pharmacology , Hep G2 Cells , Humans , Kidney/chemistry , Kidney/metabolism , Liver/chemistry , Liver/metabolism , Lung/chemistry , Lung/metabolism , Male , Mass Spectrometry , Mice , Organ Specificity , Panobinostat/administration & dosage , Panobinostat/pharmacology , Protein Stability , Rats , Small Molecule Libraries/pharmacology , Spleen/chemistry , Spleen/metabolism , Testis/chemistry , Testis/metabolism , Thermodynamics , Triazoles/administration & dosage , Triazoles/pharmacology , Vemurafenib/administration & dosage , Vemurafenib/pharmacology
8.
ACS Med Chem Lett ; 10(5): 780-785, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31097999

ABSTRACT

The serine/threonine protein kinase TBK1 (Tank-binding Kinase-1) is a noncanonical member of the IkB kinase (IKK) family. This kinase regulates signaling pathways in innate immunity, oncogenesis, energy homeostasis, autophagy, and neuroinflammation. Herein, we report the discovery and characterization of a novel potent and highly selective TBK1 inhibitor, GSK8612. In cellular assays, this small molecule inhibited toll-like receptor (TLR)3-induced interferon regulatory factor (IRF)3 phosphorylation in Ramos cells and type I interferon (IFN) secretion in primary human mononuclear cells. In THP1 cells, GSK8612 was able to inhibit secretion of interferon beta (IFNß) in response to dsDNA and cGAMP, the natural ligand for STING. GSK8612 is a TBK1 small molecule inhibitor displaying an excellent selectivity profile and therefore represents an ideal probe to further dissect the biology of TBK1 in models of immunity, neuroinflammation, obesity, or cancer.

9.
Nat Commun ; 10(1): 6, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30602778

ABSTRACT

Myofibroblasts are the key effector cells responsible for excessive extracellular matrix deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition currently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-ß1 stimulated collagen synthesis in human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The importance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other matrisome proteins implicated in the development of fibrosis and human disease relevance was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Collagen/biosynthesis , Fibroblasts/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphoproteins/metabolism , Transforming Growth Factor beta1/metabolism , Cell Cycle Proteins , Cell Line , Humans , Idiopathic Pulmonary Fibrosis/etiology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Sirolimus , TOR Serine-Threonine Kinases/metabolism
10.
Biochem Pharmacol ; 75(2): 503-13, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17945191

ABSTRACT

Boswellic acids (BAs) are assumed as the anti-inflammatory principles of Boswellia species. Initially, it was found that BAs inhibit leukotriene biosynthesis and 5-lipoxygenase (EC number 1.13.11.34), whereas suppression of prostaglandin formation and inhibition of cyclooxygenases (COX, EC number 1.14.99.1) has been excluded. Recently, we demonstrated that BAs also interfere with platelet-type 12-lipoxygenase. Here, we show that BAs, preferably 3-O-acetyl-11-keto-beta-BA (AKBA), concentration-dependently inhibit COX-1 product formation in intact human platelets (IC(50)=6 microM) as well as the activity of isolated COX-1 enzyme in cell-free assays (IC(50)=32 microM). The inhibitory effect of AKBA is reversible, and increased levels of arachidonic acid (AA) as substrate for COX-1 impair the efficacy. COX-1 in platelet lysates or isolated COX-1 selectively bound to an affinity matrix composed of immobilized BAs linked via glutaric acid to sepharose and this binding was reversed by ibuprofen or AA. Automated molecular docking of BAs into X-ray structures of COX-1 yielded positive Chemscore values for BAs, indicating favorable binding to the active site of the enzyme. In contrast, COX-2 was less efficiently inhibited by BAs as compared to COX-1, and pull-down experiments as well as docking studies exclude strong affinities of BAs towards COX-2. In conclusion, BAs, in particular AKBA, directly interfere with COX-1 and may mediate their anti-inflammatory actions not only by suppression of lipoxygenases, but also by inhibiting cyclooxygenases, preferentially COX-1.


Subject(s)
Cyclooxygenase 1/drug effects , Cyclooxygenase Inhibitors/pharmacology , Triterpenes/pharmacology , Arachidonic Acid/metabolism , Cyclooxygenase 1/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Humans
11.
Nat Commun ; 9(1): 689, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449567

ABSTRACT

A better understanding of proteostasis in health and disease requires robust methods to determine protein half-lives. Here we improve the precision and accuracy of peptide ion intensity-based quantification, enabling more accurate protein turnover determination in non-dividing cells by dynamic SILAC-based proteomics. This approach allows exact determination of protein half-lives ranging from 10 to >1000 h. We identified 4000-6000 proteins in several non-dividing cell types, corresponding to 9699 unique protein identifications over the entire data set. We observed similar protein half-lives in B-cells, natural killer cells and monocytes, whereas hepatocytes and mouse embryonic neurons show substantial differences. Our data set extends and statistically validates the previous observation that subunits of protein complexes tend to have coherent turnover. Moreover, analysis of different proteasome and nuclear pore complex assemblies suggests that their turnover rate is architecture dependent. These results illustrate that our approach allows investigating protein turnover and its implications in various cell types.


Subject(s)
Cells/metabolism , Proteins/chemistry , Proteins/metabolism , Animals , Cells/chemistry , Cells, Cultured , Humans , Mass Spectrometry , Mice , Peptides/chemistry , Peptides/metabolism , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteomics
12.
J Med Chem ; 60(13): 5455-5471, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28591512

ABSTRACT

The availability of high quality probes for specific protein targets is fundamental to the investigation of their function and their validation as therapeutic targets. We report the utilization of a dedicated chemoproteomic assay platform combining affinity enrichment technology with high-resolution protein mass spectrometry to the discovery of a novel nicotinamide isoster, the tetrazoloquinoxaline 41, a highly potent and selective tankyrase inhibitor. We also describe the use of 41 to investigate the biology of tankyrase, revealing the compound induced growth inhibition of a number of tumor derived cell lines, demonstrating the potential of tankyrase inhibitors in oncology.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Quinoxalines/pharmacology , Tankyrases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Models, Molecular , Molecular Structure , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Structure-Activity Relationship , Tankyrases/metabolism
13.
Biochim Biophys Acta ; 1736(2): 109-19, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16126002

ABSTRACT

Here, we show that actin polymerisation inhibitors such as latrunculin B (LB), and to a minor extent also cytochalasin D (Cyt D), enhance the release of arachidonic acid (AA) as well as nuclear translocation of 5-lipoxygenase (5-LO) and 5-LO product synthesis in human polymorphonuclear leukocytes (PMNL), challenged with thapsigargin (TG) or N-formyl-methionyl-leucyl-phenylalanine. The concentration-dependent effects of LB (EC50 approximately 200 nM) declined with prolonged preincubation (>3 min) prior TG and were barely detectable when PMNL were stimulated with Ca2+-ionophores. Investigation of the stimulatory mechanisms revealed that LB (or Cyt D) elicits Ca2+ mobilisation and potentiates stimulus-induced elevation of intracellular Ca2+, regardless of the nature of the stimulus. LB caused rapid but only moderate activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)2. The selective Src family kinase inhibitors PP2 and SU6656 blocked LB- or Cyt D-mediated Ca2+ mobilisation and suppressed the upregulatory effects on AA release and 5-LO product synthesis, without affecting AA metabolism evoked by ionophore alone. We conclude that in PMNL, inhibitors of actin polymerisation cause enhancement of intracellular Ca2+ levels through Src family kinase signaling, thereby facilitating stimulus-induced release of AA and 5-LO product formation.


Subject(s)
Actins/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Calcium/metabolism , Cytochalasin D/pharmacology , Neutrophils/drug effects , Thiazoles/pharmacology , src-Family Kinases/metabolism , Adult , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Cytochalasin D/metabolism , Enzyme Activation , Humans , Mitogen-Activated Protein Kinases/metabolism , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/metabolism , Nucleic Acid Synthesis Inhibitors/pharmacology , Polymers , Thapsigargin/pharmacology , Thiazoles/metabolism , Thiazolidines , Up-Regulation , src-Family Kinases/antagonists & inhibitors
14.
Curr Med Chem ; 13(28): 3359-69, 2006.
Article in English | MEDLINE | ID: mdl-17168710

ABSTRACT

Gum resin extracts of Boswellia species have been traditionally applied in folk medicine for centuries to treat various chronic inflammatory diseases, and experimental data from animal models and studies with human subjects confirmed the potential of B. spec extracts for the treatment of not only inflammation but also of cancer. Analysis of the ingredients of these extracts revealed that the pentacyclic triterpenes boswellic acids (BAs) possess biological activities and appear to be responsible for the respective pharmacological actions. Approaches in order to elucidate the molecular mechanisms underlying the biological effects of BAs identified 5-lipoxygenase, human leukocyte elastase, toposiomerase I and II, as well as IkappaB kinases as molecular targets of BAs. Moreover, it was shown that depending on the cell type and the structure of the BAs, the compounds differentially interfere with signal transduction pathways including Ca(2+/-) and MAPK signaling in various blood cells, related to functional cellular processes important for inflammatory reactions and tumor growth. This review summarizes the biological actions of BAs on the cellular and molecular level and attempts to put the data into perspective of the beneficial effects manifested in animal studies and trials with human subjects related to inflammation and cancer.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Animals , Humans , Structure-Activity Relationship
15.
J Med Chem ; 49(14): 4327-32, 2006 Jul 13.
Article in English | MEDLINE | ID: mdl-16821792

ABSTRACT

Compounds that inhibit 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of leukotrienes (LTs), possess potential for the treatment of inflammatory and allergic diseases as well as of atherosclerosis and cancer. Here we present the design and the synthesis of a series of novel 2-amino-5-hydroxyindoles that potently inhibit isolated human recombinant 5-LO as well as 5-LO in polymorphonuclear leukocytes, exemplified by ethyl 2-[(3-chlorophenyl)amino]-5-hydroxy-1H-indole-3-carboxylate (3n, IC(50) value congruent with 300 nM). Introduction of an aryl/arylethylamino group or 4-arylpiperazin-1-yl residues into position 2 of the 5-hydroxyindoles was essential for biological activity. Whereas the 4-arylpiperazin-1-yl derivatives were more potent in cell-free assays as compared to intact cell test systems, aryl/arylethylamino derivatives inhibited 5-LO activity in intact cells and cell-free assays almost equally well. On the basis of their 5-LO inhibitory properties, these novel 2-amino-5-hydroxyindoles represent potential candidates for the pharmacological intervention with LT-associated diseases.


Subject(s)
Amines/chemical synthesis , Indoles/chemical synthesis , Lipoxygenase Inhibitors , Amines/chemistry , Amines/pharmacology , Escherichia coli/enzymology , Humans , In Vitro Techniques , Indoles/chemistry , Indoles/pharmacology , Leukocytes/drug effects , Leukocytes/enzymology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/isolation & purification , Stereoisomerism , Structure-Activity Relationship
16.
Med Chem ; 2(6): 591-5, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17105440

ABSTRACT

We have recently presented the synthesis of 2-amino-1,4-benzoquinones by nuclear amination of p-hydroquinones with primary aromatic amines using fungal laccases as catalysts. In the present report, a series of selected 2-amino-1,4-benzoquinones was tested for biological activities, such as inhibition of human 5-lipoxygenase and anti-proliferative/anti-neoplastic effects. Compound 9 (2-[4'-(iso-propylphenyl)-amino]-5,6-dimethyl-1,4-benzoquinone) was identified as the most potent aminoquinone derivative, suppressing 5-lipoxygenase in intact human polymorphonuclear leukocytes as well as in crude enzyme preparations in the low micromolar range (IC50 = 6 microM). Structure-activity relationships are discussed. Of interest, the 5-lipoxygenase inhibitory properties of 2-amino-1,4-benzoquinones in intact cells correlated to the anti-neoplastic activities of the compounds in breast and urinary bladder cancer cell lines. Based on these features, bioactive 2-amino-1,4-benzoquinones may possess potential for the pharmacological treatment of diseases associated with elevated 5-lipoxygenase activity, in particular certain types of cancer.


Subject(s)
Antineoplastic Agents/chemistry , Benzoquinones/pharmacology , Lipoxygenase Inhibitors , Antineoplastic Agents/pharmacology , Benzoquinones/chemistry , Cell-Free System , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
17.
Br J Pharmacol ; 146(4): 514-24, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16086030

ABSTRACT

We have recently shown that in polymorphonuclear leukocytes, 11-keto boswellic acids (KBAs) induce Ca2+ mobilisation and activation of mitogen-activated protein kinases (MAPK). Here we addressed the effects of BAs on central signalling pathways in human platelets and on various platelet functions. We found that beta-BA (10 microM), the 11-methylene analogue of KBA, caused a pronounced mobilisation of Ca2+ from internal stores and induced the phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK)2, and Akt. These effects of beta-BA were concentration dependent, and the magnitude of the responses was comparable to those obtained after platelet stimulation with thrombin or collagen. Based on inhibitor studies, beta-BA triggers Ca2+ mobilisation via the phospholipase (PL)C/inositol-1,4,5-trisphosphate pathway, and involves Src family kinase signalling. Investigation of platelet functions revealed that beta-BA (> or =10 microM) strongly stimulates the platelet-induced generation of thrombin in an ex-vivo in-vitro model, the liberation of arachidonic acid (AA), and induces platelet aggregation in a Ca2+-dependent manner. In contrast to beta-BA, the 11-keto-BAs (KBA or AKBA) evoke only moderate Ca2+ mobilisation and activate p38 MAPK, but fail to induce phosphorylation of ERK2 or Akt, and do not cause aggregation or significant generation of thrombin. In summary, beta-BA potently induces Ca2+ mobilisation as well as the activation of pivotal protein kinases, and elicits functional platelet responses such as thrombin generation, liberation of AA, and aggregation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Blood Platelets/drug effects , Calcium Signaling/drug effects , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Triterpenes/pharmacology , Analysis of Variance , Anti-Inflammatory Agents/chemistry , Arachidonic Acid/metabolism , Blood Platelets/physiology , Dose-Response Relationship, Drug , Humans , In Vitro Techniques , Mitogen-Activated Protein Kinase 1/metabolism , Phosphorylation/drug effects , Platelet Aggregation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Thrombin/metabolism , Time Factors , Triterpenes/chemistry , Type C Phospholipases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism
18.
Br J Pharmacol ; 141(2): 223-32, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14691050

ABSTRACT

1. We have previously shown that 11-keto boswellic acids (11-keto-BAs), the active principles of Boswellia serrata gum resins, activate p38 MAPK and p42/44(MAPK) and stimulate Ca(2+) mobilisation in human polymorphonuclear leucocytes (PMNL). 2. In this study, we attempted to connect the activation of MAPK and mobilisation of Ca(2+) to functional responses of PMNL, including the formation of reactive oxygen species (ROS), release of arachidonic acid (AA), and leukotriene (LT) biosynthesis. 3. We found that, in PMNL, 11-keto-BAs stimulate the formation of ROS and cause release of AA as well as its transformation to LTs via 5-lipoxygenase. 4. Based on inhibitor studies, 11-keto-BA-induced ROS formation is Ca(2+)-dependent and is mediated by NADPH oxidase involving PI 3-K and p42/44(MAPK) signalling pathways. Also, the release of AA depends on Ca(2+) and p42/44(MAPK), whereas the pathways stimulating 5-LO are not readily apparent. 5. Pertussis toxin, which inactivates G(i/0) protein subunits, prevents MAPK activation and Ca(2+) mobilisation induced by 11-keto-BAs, implying the involvement of a G(i/0) protein in BA signalling. 6. Expanding studies on differentiated haematopoietic cell lines (HL60, Mono Mac 6, BL41-E-95-A) demonstrate that the ability of BAs to activate MAPK and to mobilise Ca(2+) may depend on the cell type or the differentiation status. 7. In summary, we conclude that BAs act via G(i/0) protein(s) stimulating signalling pathways that control functional leucocyte responses, in a similar way as chemoattractants, that is, N-formyl-methionyl-leucyl-phenylalanine or platelet-activating factor.


Subject(s)
Calcium Signaling/drug effects , Leukocytes/drug effects , Lipid Peroxides/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , Triterpenes/pharmacology , Calcium Signaling/physiology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , HL-60 Cells , Humans , Leukocytes/metabolism , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases
19.
Cell Transplant ; 21(7): 1443-61, 2012.
Article in English | MEDLINE | ID: mdl-22776314

ABSTRACT

The aim of this study was to evaluate the overexpression of genes central to cell survival and angiogenesis to enhance the function of human late outgrowth endothelial progenitor cells (EPCs) and their utility for infarct recovery. Ischemic myocardial injury creates a hostile microenvironment, which is characterized by hypoxia, oxidative stress, and inflammation. The infarct microenvironment prevents adhesion, survival, and integration of cell transplants that promote neovascularization. EPCs are dysfunctional as a result of risk factors in cardiovascular patients. Protein kinase B (Akt) and heme-oxygenase-1 (HO-1) are intracellular proteins that play an important role in angiogenesis and cell survival. Late outgrowth EPCs transduced ex vivo with Akt and HO-1 demonstrate improved adhesion to extracellular matrix, improved migration toward human cardiomyocytes, and an improved paracrine profile under stress. Enhanced late outgrowth EPCs reduce the tumor necrosis factor-α (TNF-α) burden both in vitro and in vivo, attenuating nuclear factor-κB (NF-κB) activity and promoting cell survival. Akt and HO-1 enhance late outgrowth EPC neovascularization, resulting in improved cardiac performance and reduced negative remodeling after myocardial infarction in nude mice. Alteration of the infarct microenvironment through gene modification of human late outgrowth EPCs enhances the function and integration of transplanted cells for restoration of cardiac function.


Subject(s)
Endothelial Cells/cytology , Heme Oxygenase-1/genetics , Myocardial Infarction/therapy , Proto-Oncogene Proteins c-akt/genetics , Stem Cells/cytology , Animals , Cell Adhesion , Cell Movement , Cells, Cultured , Coronary Vessels/physiology , Genetic Therapy , Heme Oxygenase-1/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Myocytes, Cardiac/cytology , Neovascularization, Physiologic , Phagocytosis , Protein Array Analysis , Proteome/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Stem Cell Transplantation , Stem Cells/metabolism , Ventricular Remodeling
20.
Nat Biotechnol ; 29(3): 255-65, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21258344

ABSTRACT

The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.


Subject(s)
Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Mass Spectrometry/methods , Peptide Mapping/methods , Protein Interaction Mapping/methods , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL